99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設(shè)計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日本欧美久久久久免费播放网| 国产精品人妖ts系列视频| 欧美午夜电影一区| 欧美成人a在线| 亚洲国产美国国产综合一区二区| 日韩在线a电影| 欧美三日本三级三级在线播放| 国产精品久久久久毛片软件| av电影天堂一区二区在线观看| 国产精品青草综合久久久久99| 国产精品综合视频| 欧美激情综合在线| 欧美色图在线观看| 国产麻豆91精品| 亚洲国产日韩在线一区模特| 欧美一二三在线| 91农村精品一区二区在线| 亚洲福中文字幕伊人影院| 精品粉嫩超白一线天av| 9i在线看片成人免费| 青娱乐精品在线视频| 亚洲欧洲日韩av| ww久久中文字幕| 欧美日韩国产综合一区二区三区 | 97精品国产97久久久久久久久久久久| 亚洲九九爱视频| 国产性天天综合网| 日韩一区二区三区视频在线观看| 国产麻豆日韩欧美久久| 久久精品国产在热久久| 亚洲动漫第一页| 一区二区三区在线免费观看 | 色婷婷狠狠综合| 国产成人在线视频网站| 蜜臀久久久久久久| 精品一区精品二区高清| 三级一区在线视频先锋| 香蕉乱码成人久久天堂爱免费| 日本一区二区三区高清不卡| 国产日韩欧美综合在线| 国产精品免费网站在线观看| 国产精品入口麻豆九色| 国产精品水嫩水嫩| 一区二区三区在线视频免费| 亚洲精品五月天| 天天色天天爱天天射综合| 日韩影院在线观看| 国产精品夜夜爽| 欧美少妇xxx| 久久综合色一综合色88| 国产盗摄一区二区| 国产**成人网毛片九色 | 一区二区三区四区在线免费观看| ●精品国产综合乱码久久久久| 一区二区国产盗摄色噜噜| 国产乱码精品一区二区三区五月婷| 国产一区二区三区日韩| 欧美日韩视频一区二区| 国产精品网站在线观看| 首页国产丝袜综合| 欧美丝袜丝交足nylons| 久久品道一品道久久精品| 午夜精品123| 在线观看亚洲精品视频| 国产日韩欧美激情| 另类的小说在线视频另类成人小视频在线| 91原创在线视频| 亚洲精品在线免费播放| 黄色成人免费在线| 欧美一区二区福利视频| 亚洲电影视频在线| 日韩一区二区三区精品视频| 亚洲视频一二区| eeuss影院一区二区三区| 久久精品人人做人人综合| 精品一区二区三区视频在线观看| 欧美日韩国产一区| 午夜激情一区二区| 日韩无一区二区| 蜜臀a∨国产成人精品| 日韩欧美在线一区二区三区| 日本视频一区二区三区| 久久这里只有精品视频网| 国产精品66部| 亚洲一卡二卡三卡四卡五卡| 欧美做爰猛烈大尺度电影无法无天| 一区二区三区小说| 精品福利一二区| 91丨porny丨户外露出| 午夜视黄欧洲亚洲| 久久综合九色综合久久久精品综合 | 不卡的电影网站| 自拍偷拍欧美激情| 欧美r级电影在线观看| 欧美性极品少妇| 成人国产亚洲欧美成人综合网| 亚洲一区在线观看免费观看电影高清 | 久久女同精品一区二区| 在线观看中文字幕不卡| 99视频在线观看一区三区| 青青草原综合久久大伊人精品 | 中文字幕在线一区免费| 欧美www视频| 日韩免费看的电影| 欧美人xxxx| 欧美日韩国产另类不卡| 制服丝袜一区二区三区| 91精品国产综合久久香蕉的特点| 欧美日韩在线一区二区| 久久老女人爱爱| 奇米影视7777精品一区二区| 中文字幕中文在线不卡住| 一区二区三区高清| 成+人+亚洲+综合天堂| 国产精品中文欧美| 久久精品国产一区二区| 亚洲第一av色| 亚洲国产精品一区二区www | 欧美精品一区二区三区视频| 日韩网站在线看片你懂的| av一区二区久久| 91色视频在线| 91浏览器在线视频| 欧美日韩一本到| 日韩欧美一级片| 国产日产精品1区| 中文字幕一区二区不卡| 亚洲一区二区三区三| 午夜精品久久久久久久99樱桃 | 成人的网站免费观看| 亚洲美女屁股眼交3| 国产精品网站一区| 国产欧美一区二区精品性| 亚洲一级二级三级在线免费观看| 国产在线一区观看| 麻豆视频一区二区| 在线免费观看日本欧美| 欧美精品一区二区三| 亚洲国产成人porn| 国产精品系列在线观看| 91欧美一区二区| 久久久五月婷婷| 日本一不卡视频| 欧美性视频一区二区三区| 久久日一线二线三线suv| 亚洲一区二区精品久久av| 国产真实乱子伦精品视频| 欧美丰满美乳xxx高潮www| 欧美高清一级片在线观看| 免费成人性网站| 精品国产乱码久久久久久老虎| 亚洲成人av中文| 欧美一区二区三区视频在线观看| 日韩在线观看一区二区| 99热精品国产| 天天综合色天天| 天堂影院一区二区| 99久久久无码国产精品| 日本色综合中文字幕| 麻豆精品在线看| 丝袜美腿亚洲色图| 亚洲三级在线看| 国产精品美女www爽爽爽| 欧美亚洲免费在线一区| 男女激情视频一区| 日韩一区在线免费观看| 欧美猛男男办公室激情| 免费视频最近日韩| ...av二区三区久久精品| 中文字幕在线不卡国产视频| 日本精品免费观看高清观看| 中文字幕一区二区三区四区| 99国产精品久| 国产电影精品久久禁18| 亚洲视频电影在线| 久久嫩草精品久久久精品| 99re热视频这里只精品| 国产传媒日韩欧美成人| 日韩一区二区三区高清免费看看| 国产一区二区三区av电影 | 色妹子一区二区| 婷婷久久综合九色综合伊人色| 亚洲精品在线电影| 国产精品一区二区在线播放| 蜜桃av噜噜一区二区三区小说| 国产精品久久久久影院亚瑟| 日韩电影免费在线看| 亚洲一区中文日韩| 51精品久久久久久久蜜臀| 色综合久久六月婷婷中文字幕| 国产一区二区三区综合| 精品一区二区在线视频| 美女视频黄 久久| 日韩制服丝袜av| 国产酒店精品激情| 国产成人av电影免费在线观看| 国产精品天干天干在观线| 洋洋av久久久久久久一区| 亚洲成av人片在线| 亚洲国产人成综合网站|