99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設(shè)計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美在线观看www| 国产精品久久久久7777婷婷| 亚洲欧洲一区二区在线观看| 欧美激情一级片一区二区| 99视频热这里只有精品免费| 国产精品久久久99| 午夜精品短视频| 国产日韩成人精品| 欧美激情第8页| 亚洲免费视频一区二区| 伊人久久综合97精品| 欧美成人性网| 亚洲欧洲一区二区在线观看| 国产精品久久影院| 欧美顶级艳妇交换群宴| 欧美亚洲视频一区二区| 亚洲精品国产精品国自产观看浪潮| 欧美视频在线观看免费网址| 久久一区二区三区四区| 午夜综合激情| 99热免费精品| 亚洲国内精品在线| 好吊妞这里只有精品| 国产精品婷婷午夜在线观看| 欧美日韩亚洲国产一区| 久久网站热最新地址| 在线综合亚洲| 亚洲美女精品一区| 亚洲第一色在线| 国产一区二区三区四区老人| 国产精品久久久久毛片大屁完整版| 欧美高清在线精品一区| 免费短视频成人日韩| 久久久国产成人精品| 午夜精品免费| 亚洲综合欧美| 亚洲欧美电影在线观看| 99视频有精品| 亚洲视频香蕉人妖| 一区二区三区精品视频| 一区二区免费看| 一本大道av伊人久久综合| 亚洲免费不卡| 亚洲一区国产精品| 先锋a资源在线看亚洲| 欧美一级视频精品观看| 欧美一区二区日韩| 久久亚洲春色中文字幕久久久| 欧美一区二区啪啪| 亚洲欧美成人网| 欧美中文字幕在线视频| 亚洲影视综合| 亚欧成人在线| 久久国产精品72免费观看| 久久精品99国产精品| 久久久av水蜜桃| 久久久夜夜夜| 欧美国产欧美亚洲国产日韩mv天天看完整| 久热爱精品视频线路一| 午夜久久电影网| 久久深夜福利免费观看| 牛夜精品久久久久久久99黑人| 免费的成人av| 欧美午夜精品久久久| 国产精品制服诱惑| 亚洲国产人成综合网站| 亚洲美女少妇无套啪啪呻吟| 亚洲综合色视频| 久久综合一区二区| 欧美三区在线观看| 国内久久婷婷综合| 一本久久精品一区二区| 欧美在线观看网址综合| 美日韩精品视频免费看| 国产精品美女主播| 亚洲高清在线视频| 亚洲欧美电影院| 欧美黄色大片网站| 国产亚洲成人一区| 亚洲人成亚洲人成在线观看图片| 亚洲综合精品| 欧美精品二区| 今天的高清视频免费播放成人 | 99综合电影在线视频| 久久久999精品免费| 欧美日韩精品一二三区| 狠久久av成人天堂| 亚洲一区在线直播| 欧美日韩一区在线播放| 亚洲黄色在线观看| 久久九九精品99国产精品| 欧美三级韩国三级日本三斤| 在线观看不卡| 久久久精彩视频| 国产精品一区在线播放| 亚洲深夜福利| 欧美日韩理论| 亚洲精品三级| 欧美理论电影网| 亚洲国产乱码最新视频| 久久亚洲视频| 国产在线精品成人一区二区三区| 亚洲综合视频一区| 国产精品久久久91| 亚洲视频www| 欧美日韩综合视频| 99精品欧美一区二区三区| 久久丁香综合五月国产三级网站| 欧美日韩人人澡狠狠躁视频| 极品日韩av| 亚洲欧美国产高清| 欧美性久久久| 亚洲一级在线| 欧美日韩黄色大片| 亚洲精品一区二区三区蜜桃久| 久久视频一区二区| 一区二区视频免费在线观看 | 欧美激情va永久在线播放| 国产日韩精品视频一区二区三区| 亚洲综合大片69999| 欧美婷婷久久| 日韩亚洲欧美在线观看| 免费成人av资源网| 亚洲毛片av| 国产精品久久久久久久久婷婷| 宅男精品视频| 黑人一区二区| 欧美电影电视剧在线观看| 一区二区三区四区五区视频 | 欧美精品一区二区在线播放| 99精品热视频| 国产精品网站视频| 亚洲女同精品视频| 狠狠色狠狠色综合日日小说 | 国产精品午夜春色av| 亚洲神马久久| 国产欧美日本| 欧美在线免费视屏| 亚洲国产视频一区二区| 欧美日韩国产影片| 久久不射网站| 亚洲每日在线| 国产一区二区| 欧美日韩黄色大片| 久热精品在线| 亚洲欧美不卡| 亚洲精品一区二区三区婷婷月| 国产乱人伦精品一区二区| 可以看av的网站久久看| 中文在线一区| 今天的高清视频免费播放成人 | 亚洲特色特黄| 国产一区二区精品久久| 欧美色图天堂网| 美日韩精品视频| 欧美一区二区三区四区在线观看| 亚洲人屁股眼子交8| 国产精品视频xxxx| 欧美日韩精品一区二区天天拍小说 | 夜夜嗨网站十八久久| 国产精品久久久久久久app| 久久精品麻豆| 宅男噜噜噜66一区二区| 在线精品视频在线观看高清| 国产精品欧美一区二区三区奶水| 欧美精品国产一区| 美女精品国产| 欧美一区不卡| 一区二区三区日韩在线观看| 亚洲高清在线播放| 国产视频亚洲精品| 欧美日韩免费区域视频在线观看| 麻豆精品一区二区综合av| 亚洲视频欧美在线| 日韩一级黄色av| 亚洲精品视频免费| 亚洲精品视频免费观看| 亚洲黄色成人| 亚洲日本va在线观看| 亚洲国产精品嫩草影院| 亚洲国产成人午夜在线一区| 狠狠狠色丁香婷婷综合激情| 国产婷婷色综合av蜜臀av| 国产亚洲精品aa| 好吊视频一区二区三区四区| 国产视频在线一区二区| 国产午夜精品美女视频明星a级| 国产伦精品一区二区| 国产欧美日韩视频一区二区| 国产精品色网| 国产日韩欧美在线看| 国产性天天综合网| 激情综合久久| 亚洲免费成人av电影| 在线一区二区三区做爰视频网站| 中国亚洲黄色| 欧美亚洲系列| 欧美大片va欧美在线播放| 欧美日韩久久| 国产精品美腿一区在线看|