合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        MA2552編程代寫、代做MATLAB程序

        時間:2023-12-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


        MA2552 Introduction to Computing (DLI) 2023/24

        Computer Assignment 3

        1. Write a function with header [B] = myMakeLinInd(A), where A and B are matrices.

        Let the rank(A) = n, then B should be a matrix containing the first n columns of A

        that are all linearly independent.

        2. Write a function alpha = myPolyfit(n,p,x) that finds the coefficients of a polynomial p(x) of degree n that fits the data in p and x. Your function should solve this

        problem as a linear system of equations and show an error if there is either no solution

        or an infinite number of solutions.

        3. Repeat the question above but using the least square method instead. Note that now

        there is always a unique solution, independently of the length p and x. You can check

        your results with the MATLAB built-in function polyfit.

        4. Using the bisection method, write a function r = myRoots(alpha) that outputs the

        (real) roots of a polynomial whose coefficients are the elements of the (real-valued)

        array alpha. You can check your method with the MATLAB built-in function roots.

        Hint: Find the intervals of monotony by finding the roots of the derivative of the

        polynomial.

        5. The eigenvalues λ of a (square) matrix A correspond to the roots of the function

        p(λ) = det(A − λI), where I denotes the identity matrix. Explain why if A is of size

        n, then p(λ) is a polynomial of degree n. Next, using question 3 and question 4, code

        a function that finds the real eigenvalues A and their corresponding eigenvectors.

        6. The singular value decomposition of a matrix A of size n×m, is a factorisation of A in

        the form A = USV t

        , where both U and V are (full rank) (orthonormal) square matrices

        and S is a non-necessarily-square diagonal matrix whit non-negative elements. The

        non-zero elements of the diagonal of S, called singular values of A, correspond to the

        square root of the non-zero eigenvalues of AAt

        (or AtA). The matrix V is formed by the

        eigenvectors of AtA and the matrix U is formed by the eigenvectors of AAt

        . Using eig,

        implement a function [U,S,V] = mySVD(A) which computes the SVD decomposition

        of a matrix A.

        7. Note that the rank of a matrix A is given by the number of non-zero singular values of

        A (why?). Write a function that take as input a matrix A, and outputs a new matrix

        Ak, which is k-rank version of A, computed by keeping the k-largest singular values

        of A. Use this function to show a low rank version of the image of question 10 of

        Assignment 1.

        8. Find regression curves for the average runtime data T1(n) and T2(n), corresponding

        to the runtime of the code of question 10 of Assignment 2, and its efficient version,

        respectively, where n is the size of the input matrix M. Plot your regression curves along

        with the runtime data. Can you quantify now how faster is the efficient implementation

        with respect to the inefficient one?

        1

        MA2552 Introduction to Computing (DLI) 2023/24

        9. Implement a MATLAB function that take as input two arrays f and x, representing

        the values of a real valued function f(x); the array x should be evenly spaced. Your

        function should:

        (a) create a new array f_s which replace each element of f with the average of its k

        nearest neighbours (k should also be an input of your function) to the left and to

        the right. The function f_s is a way of regularising a noisy or irregular function.

        (b) returns the numerical derivative of fs using a centred first order finite difference

        scheme that you should also implement.

        Test your code with x = linspace(0,2*pi,1000)and f = sin(x) + 0.1*randn(size(x)),

        for different values of k.

        10. Write a function I = myTrapez(f, a, b, n), which computes the approximation of

        R b

        a

        f(x) dx by a trapezoidal rule: R b

        a

        f(x) dx ≈ h

        h

        f(a)+f(b)

        2 +

        Pn−1

        k=1 f(xk)

        i

        , where xk =

        a + hk, and h =

        b−a

        n

        .Your function should not use any built-in Matlab functions. Test

        your function by computing R 1

        0

        1 − x

        2 dx, with n = 10, 20, and 40. Given that the

        exact value of the integral is π/4, how does the error of the approximateresult scale

        with n?

        請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫COMP3023、C/C++語言編程代做
      2. 下一篇:代寫COMP26120、代做C++, Java/Python編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 久久精品道一区二区三区| 国产裸体歌舞一区二区| 成人精品视频一区二区三区| 亚洲av乱码一区二区三区| 国产aⅴ一区二区三区| 偷拍激情视频一区二区三区| 国产精品高清一区二区三区| 一区二区三区在线观看视频| 日本一区二区三区爆乳| 日本一区二区在线播放| 亚洲爆乳精品无码一区二区三区| 亚洲制服丝袜一区二区三区| 精品乱子伦一区二区三区| 国产精品亚洲一区二区三区在线观看 | 色窝窝无码一区二区三区| 好爽毛片一区二区三区四无码三飞 | 久久se精品一区二区影院| 国产日本亚洲一区二区三区| 国产高清视频一区三区| 国产AV一区二区三区无码野战| 中文字幕精品一区| 无码AV动漫精品一区二区免费| 一区二区三区视频观看| 波多野结衣在线观看一区二区三区 | 日韩人妻不卡一区二区三区| 成人免费区一区二区三区| 久久无码一区二区三区少妇| 色多多免费视频观看区一区| 国产精品亚洲专一区二区三区| 东京热无码一区二区三区av| 亚洲AV无码一区二三区| 视频一区在线免费观看| 成人在线一区二区| 伦理一区二区三区| 国产亚洲一区二区三区在线观看| 久久无码人妻一区二区三区| 精品人妻AV一区二区三区| 国产福利微拍精品一区二区| 最新中文字幕一区| 精品女同一区二区三区免费播放| 国产一区二区三精品久久久无广告|