99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CS 202代寫、代做Operating Systems設(shè)計(jì)

時間:2023-12-07  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



CS 202: Advanced Operating Systems
University of California, Riverside
Lab #3: xv6 Threads
Due: 12/02/2022, Friday, 11:59 p.m. (Pacific time)
Overview
In this project, you will be adding kernel-level thread support to xv6. First, you will implement a new
system call to create a kernel-level thread, called clone(). Then, using the clone() system call, you will
build a simple user-level library consisting of thread_create(), lock_acquire() and
lock_release() for thread management. Finally, you will show these things work by using a user-level
multi-threaded test program.
Before your start:
1. In Makefile, set the number of CPUs to 3 (CPUS := 3). You may debug your code using one
CPU, your demo and submission should have CPUS := 3.
2. Replace kernel/trampoline.S with the one provided at the end of this document. This new
trampoline.S is also available to download from eLearn.
Background: xv6 virtual address space memory layout
In xv6, every process has its own page table that defines a virtual address space used in the user mode.
When a process enters the kernel mode, the address space is switched to the kernel’s virtual address space.
Because of this, each process has separate stacks for the kernel and user spaces (aka. user stack and kernel
stack). Also, in xv6, each PCB maintains separate objects to store process’s register values:
struct proc {
 …
struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
trapframe stores registers used in the user space when entering the kernel mode. context is for registers
in the kernel space when context-switched to another process.
Below figure illustrates the layout of a process’s virtual address space in xv6-riscv.
2
In the virtual address space, user text, data, and user stack are mapped at the bottom. At top, you can see
two special pages are mapped: trampoline and trapframe, each has the size of PGSIZE (= 4096 bytes).
The trampoline page maps the code to transition in and out of the kernel. The trapframe page maps
the PCB’s trapframe object so that it is accessible by a trap handler while in the user space (see Chapter
4 of the xv6 book for more details).
The mapping of those pages to process’s address space is done when a process is created. In fork(), it
calls proc_pagetable() which allocates a new address space and then performs mappings of
trampoline and trapframe pages. For example, in proc_pagetable()
if(mappages(pagetable, TRAPFRAME, PGSIZE,
(uint64)(p->trapframe), PTE_R | PTE_W) < 0){ ...
This means mapping the kernel object p->trapframe to the user address space defined by pagetable
at the memory location of TRAPFRAME.
Part 1: Clone() system call
In this part, the goal is to add a new system call to create a child thread. It should look like:
int clone(void *stack);
clone() does more or less what fork() does, except for the following major differences:
• Address space: Instead of creating a new address space, it should use the parent's address space.
This means a single address space (and thus the corresponding page table) is shared between the
parent and all of its children. Do not create a separate page table for a child.
• stack argument: This pointer argument specifies the starting address of the user-level stack
used by the child. The stack area must have been allocated by the caller (parent) before the call to
clone is made. Thus, inside clone(), you should make sure that, when this syscall is returned, a
child thread runs on this stack, instead of the stack of the parent. Some basic sanity check is required
for input parameters of clone(), e.g., stack is not null.
3
Similar to fork(), the clone() call returns the PID of the child to the parent, and 0 to the newly-created
child thread. And of course, the child thread created by clone() must have its own PCB. The number of
child threads per process is assumed to be at most 20.
To manage threads, add an integer type thread_id variable to PCB. The value of thread_id is 0 for the
parent process and greater than 0 (e.g., 1, 2, …) for its child threads created using clone().
There are also some modifications required for the wait() syscall.
• wait(): The parent process uses wait() to wait for a child process to exit and returns the child’s
PID. Also, wait() frees up the child’s resources such as PCB, memory space, page table, etc. This
becomes tricky for child threads created by clone() because some resources are now shared
among all the threads of the same process. Therefore, if the child is a thread, wait() must
deallocate only the thread local resources, e.g., clearing PCB and freeing & unmapping its own
trapframe, and must not deallocate the shared page table.
For simplicity, we will assume that only parent process calls clone() – a thread created by clone()
does not call clone() to create another child thread. Also, assume that a process does not call clone()
more than 20 times (i.e., up to 20 child threads). It is fine to assume that only the parent uses wait() and
the parent is the last one to exit (i.e., after all of its child threads have exited). In addition, parent and child
do not need to share file descriptors. These assumptions will make the implementation a lot easier.
Tips:
• The best way to start would be creating clone() by duplicating fork(). fork() uses
allocproc() to allocate PCB, trapframe, pagetable, etc. However, clone() must not allocate a
separate page table because the parent and child threads should share the same page table. But each
thread still needs a separate trapframe. So, modify allocproc() or create a new function (e.g.,
allocproc_thread) for clone().
• In clone(), you need to specify the child’s user stack’s starting address (hint: trapframe->sp).
• In clone(), you should map each thread's
trapframe page to a certain user space with
no overlap. One simple way would be to map
it below the parent's trapframe location. For
example, see the figure on the right. If your
child thread has a thread ID (> 0), map it to
TRAPFRAME - PGSIZE * (thread ID).
So your first child thread's trapframe is
mapped at TRAPFRAME - PGSIZE, second
one at TRAPFRAME - PGSIZE * 2, and so
on. This can easily avoid overlap.
TRAPFRAME
trapframe
trapframe …
TRAPFRAME - PGSIZE
TRAPFRAME – 2*PGSIZE
Parent’s
Child thread 1
Child thread 2 …

4
• You also need to tell the kernel explicitly the new trapframe locations for your child threads.
Update kernel/trampoline.S as explained earlier. Then, at the end of usertrapret() in
kernel/trap.c, change
 ((void (*)(uint64))trampoline_userret)(satp);
to
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME - PGSIZE * p->thread_id, satp);
for child threads. Normal processes (or thread ID == 0) should continue to use the default
TRAPFRAME address as follows:
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME, satp);
• Trampoline (not trapframe) is already mapped by the parent and it can be shared with childs. So
you must not map it again to the page table when creating child threads (doing so will crash).
Only map the trapframe of each child (see mappages() function in the background).
• wait() uses freeproc() to deallocate child’s resources, so you will need to make appropriate
changes to freeproc().
Part 2: User-level thread library
You need to implement a user-level thread library in user/thread.c and user/thread.h. How to
create a library? Once you write user/thread.c, find the line starting with ULIB in Makefile and
modify as follows:
ULIB = $U/ulib.o $U/usys.o $U/printf.o $U/umalloc.o $U/thread.o
This will compile user/thread.c as a library and make it usable by other user-level programs that
include user/thread.h.
The first thread library routine to create is thread_create():
int thread_create(void *(start_routine)(void*), void *arg);
You can think of it as a wrapper function of clone(). Specifically, this routine must allocate a user stack
of PGSIZE bytes, and call clone() to create a child thread. Then, for the parent, this routine returns 0 on
success and -1 on failure. For the child, it calls start_routine() to start thread execution with the input
argument arg. When start_routine() returns, it should terminate the child thread by exit().
Your thread library should also implement simple user-level spin lock routines. There should be a type
struct lock_t that one uses to declare a lock, and two routines lock_acquire() and
lock_release(), which acquire and release the lock. The spin lock should use the atomic test-and-set
operation to build the spin lock (see the xv6 kernel to find an example; you can use GCC’s built-in atomic
operations like __sync_lock_test_and_set). One last routine, lock_init(), is used to initialize the lock
as need be. In summary, you need to implement:
struct lock_t {
uint locked;
};
5
int thread_create(void *(start_routine)(void*), void *arg);
void lock_init(struct lock_t* lock);
void lock_acquire(struct lock_t* lock);
void lock_release(struct lock_t* lock);
These library routines need be declared in user/thread.h and implemented in user/thread.c. Other
user programs should be able to use this library by including the header "user/thread.h".
Tips: In RISC-V, the stack grows downwards, as in most other architectures. So you need to give the
correct stack starting address to clone() for the allocated stack space.
How to test:
We will be using a simple program that uses thread_create() to create some number of threads. The
threads will simulate a game of frisbee, where each thread passes the frisbee (token) to the next thread. The
location of the frisbee is updated in a critical section protected by a lock. Each thread spins to check the
value of the lock. If it is its turn, then it prints a message, and releases the lock. Below shows the program
code. This program should run as-is. Do not modify. Add this program as user/lab3_test.c
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"
#include "user/thread.h"
lock_t lock;
int n_threads, n_passes, cur_turn, cur_pass;
void* thread_fn(void *arg)
{
int thread_id = (uint64)arg;
int done = 0;
while (!done) {
lock_acquire(&lock);
 if (cur_pass >= n_passes) done = 1;
 else if (cur_turn == thread_id) {
 cur_turn = (cur_turn + 1) % n_threads;
printf("Round %d: thread %d is passing the token to thread %d\n",
 ++cur_pass, thread_id, cur_turn);
 }
 lock_release(&lock);
 sleep(0);
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc < 3) {
printf("Usage: %s [N_PASSES] [N_THREADS]\n", argv[0]);
 exit(-1);
}
6
n_passes = atoi(argv[1]);
n_threads = atoi(argv[2]);
cur_turn = 0;
cur_pass = 0;
lock_init(&lock);
for (int i = 0; i < n_threads; i++) {
thread_create(thread_fn, (void*)(uint64)i);
}
for (int i = 0; i < n_threads; i++) {
wait(0);
}
printf("Frisbee simulation has finished, %d rounds played in total\n", n_passes);
exit(0);
}
It takes two arguments, the first is the number of rounds (passes) and the second is the number of threads
to create. For example, for 6 rounds with 4 threads:
$ lab3_test 6 4
Round 1: thread 0 is passing the token to thread 1
Round 2: thread 1 is passing the token to thread 2
Round 3: thread 2 is passing the token to thread 3
Round 4: thread 3 is passing the token to thread 0
Round 5: thread 0 is passing the token to thread 1
Round 6: thread 1 is passing the token to thread 2
Frisbee simulation has finished, 6 rounds played in total!
$
Test your implementation with up to 20 threads on 3 emulated CPUs.
The Code and Reference Materials
Download a fresh copy of xv6 from the course repository and add the above-mentioned functionalities.
This Lab may take additional readings and through understanding of the concepts discussed in the
handout. Especially, Chapters 2 and 4 of the xv6 book discusses the essential background for this Lab.
What to submit:
Your submission should include:
(1) XV6 source code with your modifications (‘make clean’ to reduce the size before submission)
(2) Writeup (in PDF). Give a detailed explanation on the changes you have made (Part 1 & 2). Add
the screenshots of the frisbee program results for “lab3_test 10 3” and “lab3_test 21 20”. Also, a
brief summary of the contributions of each member.
(3) Demo video showing that all the functionalities you implemented can work as expected, as if you
were demonstrating your work in person. Demonstrate the results of “lab3_test 10 3” and
“lab3_test 21 20” on three CPUs. Your video should show that xv6 is running with three CPUs
(e.g., ‘hart 1 starting’ and ‘hart 2 starting’ messages when booting up).
7
Grades breakdown:
• Part I: clone() system call: 45 pts
o clone() implementation
o modifications to wait()
o other related kernel changes
• Part II: user-level thread library: 25 pts
o thread_create() routine
o spinlock routines
• Writeup and demo: 30 pts
Total: 100 pts
8
Appendix: kernel/trampoline.S
# # code to switch between user and kernel space. # # this code is mapped at the same virtual address # (TRAMPOLINE) in user and kernel space so that # it continues to work when it switches page tables.
#
# kernel.ld causes this to be aligned # to a page boundary. #
.section trampsec
.globl trampoline
trampoline:
.align 4
.globl uservec
uservec: # # trap.c sets stvec to point here, so # traps from user space start here, # in supervisor mode, but with a # user page table. # # sscratch points to where the process's p->trapframe is # mapped into user space, at TRAPFRAME. # # swap a0 and sscratch # so that a0 is TRAPFRAME csrrw a0, sscratch, a0
 # save the user registers in TRAPFRAME sd ra, 40(a0) sd sp, 48(a0) sd gp, 56(a0) sd tp, 64(a0) sd t0, 72(a0) sd t1, 80(a0) sd t2, 88(a0) sd s0, 96(a0) sd s1, 104(a0) sd a1, 120(a0) sd a2, 128(a0) sd a3, 136(a0) sd a4, 144(a0) sd a5, 152(a0) sd a6, 160(a0) sd a7, 168(a0) sd s2, 176(a0) sd s3, 184(a0) sd s4, 192(a0) sd s5, 200(a0) sd s6, 208(a0) sd s7, 216(a0) sd s8, 224(a0) sd s9, 2**(a0) sd s10, 240(a0) sd s11, 248(a0) sd t3, 256(a0) sd t4, 264(a0) sd t5, 272(a0) sd t6, 280(a0)
# save the user a0 in p->trapframe->a0 csrr t0, sscratch sd t0, 112(a0)
 # restore kernel stack pointer from p->trapframe->kernel_sp ld sp, 8(a0)
 # make tp hold the current hartid, from p->trapframe->kernel_hartid ld tp, **(a0)
 # load the address of usertrap(), p->trapframe->kernel_trap
9
 ld t0, 16(a0)
 # restore kernel page table from p->trapframe->kernel_satp ld t1, 0(a0) csrw satp, t1 sfence.vma zero, zero
 # a0 is no longer valid, since the kernel page # table does not specially map p->tf.
 # jump to usertrap(), which does not return jr t0
.globl userret
userret:
 # userret(TRAPFRAME, pagetable) # switch from kernel to user. # usertrapret() calls here. # a0: TRAPFRAME, in user page table. # a1: user page table, for satp.
 # switch to the user page table. csrw satp, a1 sfence.vma zero, zero
 # put the saved user a0 in sscratch, so we # can swap it with our a0 (TRAPFRAME) in the last step. ld t0, 112(a0) csrw sscratch, t0
 # restore all but a0 from TRAPFRAME ld ra, 40(a0) ld sp, 48(a0) ld gp, 56(a0) ld tp, 64(a0) ld t0, 72(a0) ld t1, 80(a0) ld t2, 88(a0) ld s0, 96(a0) ld s1, 104(a0) ld a1, 120(a0) ld a2, 128(a0) ld a3, 136(a0) ld a4, 144(a0) ld a5, 152(a0) ld a6, 160(a0) ld a7, 168(a0) ld s2, 176(a0) ld s3, 184(a0) ld s4, 192(a0) ld s5, 200(a0) ld s6, 208(a0) ld s7, 216(a0) ld s8, 224(a0) ld s9, 2**(a0) ld s10, 240(a0) ld s11, 248(a0) ld t3, 256(a0) ld t4, 264(a0) ld t5, 272(a0) ld t6, 280(a0)
# restore user a0, and save TRAPFRAME in sscratch csrrw a0, sscratch, a0
 # return to user mode and user pc. # usertrapret() set up sstatus and sepc. Sret
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP201、java設(shè)計(jì)程序代做
  • 下一篇:CMPT 489代做、Program Synthesis編程設(shè)計(jì)代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91国产免费看| 欧美日韩国产高清一区二区| 欧美日韩精品一区二区三区四区| 亚洲欧美成aⅴ人在线观看| 99国产精品久久久久久久久久| 国产精品免费久久| 欧美视频在线播放| 韩国av一区二区三区在线观看| 91精品国产综合久久香蕉麻豆| 日韩中文字幕91| 久久久不卡影院| 99精品国产一区二区三区不卡| 亚洲电影中文字幕在线观看| 欧美精品精品一区| 经典三级在线一区| 亚洲少妇30p| 欧美一区二区三区四区五区| 国产激情一区二区三区四区| 亚洲一区欧美一区| 欧美大黄免费观看| 欧美在线小视频| 精品一区二区国语对白| 亚洲精品成人少妇| 欧美精品一区二区三区在线| 粉嫩av一区二区三区在线播放 | 日本一区二区三区久久久久久久久不 | 亚洲激情校园春色| 欧美tickling挠脚心丨vk| 91蜜桃视频在线| 国产精品99久久久久久似苏梦涵 | 视频一区二区国产| 国产精品电影院| 久久久精品tv| 欧美一二三区精品| 欧美理论在线播放| 欧美丝袜丝交足nylons| 99精品热视频| 高清不卡一区二区在线| 国产一区二区三区黄视频 | 麻豆国产精品777777在线| 亚洲免费观看高清完整版在线 | 久久这里只有精品首页| 欧美一区二区三区思思人| 欧美性高清videossexo| 99国产精品久久久久久久久久| 国产一区二区美女| 国产精品一区二区视频| 国产制服丝袜一区| 国产精品 欧美精品| 国产一区 二区 三区一级| 免费观看一级欧美片| 亚洲国产精品自拍| 亚洲午夜在线视频| 亚洲国产综合色| 亚洲一区在线观看免费观看电影高清| 亚洲天堂免费看| 亚洲男人的天堂一区二区| 亚洲色图第一区| 亚洲国产一区二区a毛片| 日韩中文字幕一区二区三区| 视频精品一区二区| 久久99精品视频| 国产成人在线视频播放| 成人综合在线网站| 91网站在线播放| 欧美日韩综合色| 欧美成人精品3d动漫h| 久久久精品免费免费| 中文字幕不卡在线观看| 伊人婷婷欧美激情| 亚洲18女电影在线观看| 日韩极品在线观看| 国产一区二区三区不卡在线观看 | 成人高清av在线| av在线免费不卡| 色又黄又爽网站www久久| 欧美精品一二三四| 2023国产精品视频| 亚洲精品国产第一综合99久久| 亚洲电影视频在线| 日韩在线a电影| 成人午夜电影久久影院| 在线看日本不卡| 2021国产精品久久精品| 亚洲美女偷拍久久| 久久99热99| 欧美中文字幕一区二区三区亚洲| 日韩欧美一区二区不卡| 亚洲欧洲色图综合| 国内精品久久久久影院色| 91丨九色丨蝌蚪丨老版| 精品99一区二区| 亚洲成人免费在线观看| 国产精品综合一区二区三区| 欧美三级日韩三级| 国产精品久线在线观看| 美女视频黄频大全不卡视频在线播放| 国产成人一区二区精品非洲| 91精品国产免费| 一二三四社区欧美黄| 成人午夜av电影| 亚洲精品在线免费观看视频| 亚洲大片在线观看| 99久久精品免费看国产免费软件| 日韩欧美成人一区二区| 午夜精品久久久久久久久| 一本一道久久a久久精品| 中文一区一区三区高中清不卡| 六月丁香婷婷久久| 欧美吞精做爰啪啪高潮| 亚洲人成在线播放网站岛国| 国产精品99久久久久久似苏梦涵 | 精品在线观看免费| 91精品国产麻豆国产自产在线 | 欧美大黄免费观看| 日本视频免费一区| 欧美日韩视频在线观看一区二区三区 | 日韩一区二区高清| 五月综合激情网| 欧美日韩国产片| 亚洲一卡二卡三卡四卡| 色欧美乱欧美15图片| 亚洲色图视频免费播放| 国产大片一区二区| 国产日韩av一区| 精品亚洲成a人| 精品sm在线观看| 国产精品一二一区| 国产日产欧美一区| 国产精品1区2区3区| www国产精品av| 国产一区二区91| 国产精品美女久久久久高潮| 91在线无精精品入口| 亚洲精品成a人| 91麻豆精品国产91久久久使用方法| 亚洲成人福利片| 精品久久一区二区三区| 国产999精品久久久久久绿帽| 国产精品久久久一本精品 | 亚洲毛片av在线| 欧美三级视频在线观看| 国产成人精品在线看| 美女国产一区二区三区| 欧美一级生活片| 北条麻妃一区二区三区| 捆绑调教一区二区三区| 亚洲一区二区三区小说| 国产视频一区二区三区在线观看| 欧美性猛片aaaaaaa做受| 99精品热视频| 国产成人综合网| 九一久久久久久| 免费的国产精品| 天天做天天摸天天爽国产一区 | 国产精品亲子乱子伦xxxx裸| 91精品国产入口在线| 日本国产一区二区| av电影在线观看一区| 粉嫩aⅴ一区二区三区四区 | 亚洲色图在线播放| 中文字幕av一区二区三区免费看| 国产亚洲欧美日韩在线一区| www国产成人| ww亚洲ww在线观看国产| 精品福利二区三区| 久久精品在线观看| 精品成人a区在线观看| 精品精品国产高清a毛片牛牛 | 99在线精品一区二区三区| 成人av免费在线| www.日韩精品| 91在线观看高清| 欧美午夜影院一区| 91麻豆精品国产91久久久久久| 欧美电影一区二区| 日韩无一区二区| xfplay精品久久| 国产精品护士白丝一区av| 一区二区三区免费观看| 成人欧美一区二区三区小说| 国产精品久久99| 亚洲一区视频在线观看视频| 日日夜夜免费精品视频| 美女脱光内衣内裤视频久久网站 | 亚洲欧洲av在线| 亚洲观看高清完整版在线观看| 午夜精品久久久久久久99樱桃| 美女一区二区视频| 欧美精品一区视频| 91看片淫黄大片一级| 成人精品视频.| 成人免费av在线| 波多野结衣在线aⅴ中文字幕不卡| 黑人巨大精品欧美一区| 极品少妇xxxx精品少妇| 精品在线亚洲视频| 国产精品青草综合久久久久99| 日韩精品中文字幕一区| 日韩理论片网站|