合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        FITE7410代做、代寫R編程語(yǔ)言

        時(shí)間:2023-12-04  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        FITE7410 Financial Fraud Analytics
        First Semester, 202**024
        Mini Case Study: Real-life Fraud Detection Scenario
        (Due Date: 4 Dec, 2023 (Mon) 23:59)
        (1) Learning Objectives
        a. Analyze a real-world dataset to promote fraud analytics thinking.
        b. Identify which explanatory variables may be good predictors or red flags associated with
        fraud.
        c. Work through the stages in model building and validation.
        d. Apply the built model to classify a case based on the predicted risk of fraud.
        e. Make a scenario-based decision informed by data analyses.
        (2) Instructions
        You are provided with a real-world dataset (ENRON case) containing fraud transaction
        information. Your task is to analyze the dataset and develop a fraud detection model using
        machine learning techniques. Follow the steps below to complete the assignment:
        a) Define the scope and objective of the case study.
        b) Exploratory Data Analysis:
        • Explore the dataset to understand its structure, features, and statistical properties.
        • Perform exploratory data analysis techniques, such as data visualization and
        statistical analysis, to gain insights into the relationships between variables and
        fraud.
        • Conduct a thorough analysis of the dataset to identify which explanatory variables
        are good predictors or red flags associated with fraud.
        • Perform data cleaning and preprocessing as necessary.
        c) Model Building and Validation:
        • Select appropriate at least TWO machine learning algorithms or any appropriate
        data analytics techniques (e.g. social network analysis, statistics analysis) for fraud
        detection.
        • Split the dataset into training and testing sets.
        2
        • Develop a fraud detection model using the chosen algorithm(s) and train it on the
        training set.
        • Evaluate the performance of the model using appropriate evaluation metrics.
        • Iterate on the model building process, adjusting hyperparameters or trying different
        algorithms, to improve the model's performance.
        d) Fraud Scenario Identification:
        • Develop a scenario related to financial fraud detection, such as a suspicious
        transaction or a potential fraudulent activity.
        • Use the trained model and the available data to make a data-informed decision
        regarding the given scenario.
        • Justify your decision based on the insights gained from the data analysis and the
        model's predictions.
        e) Non-data analytic element:
        • What are the risks and red flags of the case, with the objective to prevent similar
        financial frauds in future?
        • What are the other non-data analytic elements that should be considered (e.g.
        corporate governance and controls)?
        • Do you have any suggestions on how to prevent similar financial fraud in future?
        (3) Submission Guidelines
        1. Report
        Prepare a comprehensive report, documenting each step of your analysis, including
        explanations, visualizations, and any insights gained. Include the results of model
        evaluation and performance metrics. Present your scenario-based decision and provide
        a clear rationale for your choice.
        The report is max 8 pages long (not including Appendix) and should contain:
        • Your name and student ID
        • Title of the project
        • Background and objectives of the case study
        • Description of the dataset and the fraud data analytics method
        • Describe and interpret the result of the new fraud detection model
        • Summary and recommendation
        • Cite any references (such as websites, book chapters, articles, etc) you may have
        used
        2. Program
        Submit your R program on moodle.
        請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:代做Econ78010、R編程設(shè)計(jì)代寫
      2. 下一篇:代寫SECU73000、Python,Java程序代做
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成圖片 trae

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 亚洲AV无码一区二区三区性色| 亚洲国产精品一区二区第四页| 精品在线一区二区| 97久久精品午夜一区二区| 久久精品岛国av一区二区无码| 在线精品自拍亚洲第一区| 亚洲国产精品一区二区久| 中文字幕一区二区视频| 无码人妻精品一区二区三区99不卡| 国产成人精品日本亚洲专一区 | 久久精品无码一区二区三区不卡 | 久久精品一区二区国产| 日本精品一区二区三区视频| 精品人妻一区二区三区浪潮在线| 亲子乱AV视频一区二区| 三上悠亚亚洲一区高清| 中文字幕一区二区三区在线播放 | 麻豆天美国产一区在线播放| 日韩人妻无码一区二区三区久久99 | 中文字幕精品一区二区精品| 日本一区二区三区在线视频观看免费| 国产精品久久无码一区二区三区网| 精品无码人妻一区二区三区| 无码精品一区二区三区免费视频| 无码少妇一区二区性色AV| 久久国产免费一区二区三区| 亚洲国产老鸭窝一区二区三区| 亚洲天堂一区二区| 中文字幕无线码一区二区| 国产对白精品刺激一区二区| 精品国产一区二区三区免费看| 五十路熟女人妻一区二区| 国产怡春院无码一区二区| 日韩精品免费一区二区三区| 美女免费视频一区二区三区| 国产一区二区精品久久岳√| 亚洲国产精品一区二区九九| 日韩精品一区二区三区大桥未久| 亚洲视频一区在线观看| 国产成人高清亚洲一区91| 久久精品人妻一区二区三区|