合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        FITE7410代做、代寫R編程語言

        時間:2023-12-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        FITE7410 Financial Fraud Analytics
        First Semester, 202**024
        Mini Case Study: Real-life Fraud Detection Scenario
        (Due Date: 4 Dec, 2023 (Mon) 23:59)
        (1) Learning Objectives
        a. Analyze a real-world dataset to promote fraud analytics thinking.
        b. Identify which explanatory variables may be good predictors or red flags associated with
        fraud.
        c. Work through the stages in model building and validation.
        d. Apply the built model to classify a case based on the predicted risk of fraud.
        e. Make a scenario-based decision informed by data analyses.
        (2) Instructions
        You are provided with a real-world dataset (ENRON case) containing fraud transaction
        information. Your task is to analyze the dataset and develop a fraud detection model using
        machine learning techniques. Follow the steps below to complete the assignment:
        a) Define the scope and objective of the case study.
        b) Exploratory Data Analysis:
        • Explore the dataset to understand its structure, features, and statistical properties.
        • Perform exploratory data analysis techniques, such as data visualization and
        statistical analysis, to gain insights into the relationships between variables and
        fraud.
        • Conduct a thorough analysis of the dataset to identify which explanatory variables
        are good predictors or red flags associated with fraud.
        • Perform data cleaning and preprocessing as necessary.
        c) Model Building and Validation:
        • Select appropriate at least TWO machine learning algorithms or any appropriate
        data analytics techniques (e.g. social network analysis, statistics analysis) for fraud
        detection.
        • Split the dataset into training and testing sets.
        2
        • Develop a fraud detection model using the chosen algorithm(s) and train it on the
        training set.
        • Evaluate the performance of the model using appropriate evaluation metrics.
        • Iterate on the model building process, adjusting hyperparameters or trying different
        algorithms, to improve the model's performance.
        d) Fraud Scenario Identification:
        • Develop a scenario related to financial fraud detection, such as a suspicious
        transaction or a potential fraudulent activity.
        • Use the trained model and the available data to make a data-informed decision
        regarding the given scenario.
        • Justify your decision based on the insights gained from the data analysis and the
        model's predictions.
        e) Non-data analytic element:
        • What are the risks and red flags of the case, with the objective to prevent similar
        financial frauds in future?
        • What are the other non-data analytic elements that should be considered (e.g.
        corporate governance and controls)?
        • Do you have any suggestions on how to prevent similar financial fraud in future?
        (3) Submission Guidelines
        1. Report
        Prepare a comprehensive report, documenting each step of your analysis, including
        explanations, visualizations, and any insights gained. Include the results of model
        evaluation and performance metrics. Present your scenario-based decision and provide
        a clear rationale for your choice.
        The report is max 8 pages long (not including Appendix) and should contain:
        • Your name and student ID
        • Title of the project
        • Background and objectives of the case study
        • Description of the dataset and the fraud data analytics method
        • Describe and interpret the result of the new fraud detection model
        • Summary and recommendation
        • Cite any references (such as websites, book chapters, articles, etc) you may have
        used
        2. Program
        Submit your R program on moodle.
        請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

        掃一掃在手機打開當前頁
      1. 上一篇:代做Econ78010、R編程設計代寫
      2. 下一篇:代寫SECU73000、Python,Java程序代做
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 亚洲性日韩精品国产一区二区| 国模无码视频一区| 一本色道久久综合一区| 韩国一区二区视频| 国产一区二区三区乱码| 在线免费观看一区二区三区| 3d动漫精品一区视频在线观看| 久久综合一区二区无码| 成人区精品一区二区不卡| 国产在线一区视频| 波多野结衣一区在线| 无码人妻精品一区二区三区9厂 | 中文人妻av高清一区二区| 亚洲av午夜精品一区二区三区| 在线视频亚洲一区| 视频一区在线免费观看| 麻豆精品一区二区综合av| 无码人妻精品一区二区蜜桃百度| 在线不卡一区二区三区日韩| 日韩在线观看一区二区三区| 无码人妻aⅴ一区二区三区有奶水| 色婷婷av一区二区三区仙踪林| 中文字幕无线码一区2020青青| 国产美女一区二区三区| 精品一区二区视频在线观看| 伊人久久精品无码麻豆一区| 中文字幕日韩欧美一区二区三区| 日本精品无码一区二区三区久久久 | 日本一区二区三区不卡在线视频| 色国产在线视频一区| 风流老熟女一区二区三区| 国产福利电影一区二区三区,日韩伦理电影在线福 | 在线视频一区二区日韩国产| 国产一区二区三区国产精品| 日韩一区二区三区精品| 国产福利电影一区二区三区,免费久久久久久久精 | 丰满少妇内射一区| 亚洲一区二区三区在线网站| 国产激情一区二区三区小说 | 国产亚洲3p无码一区二区| 久久人妻内射无码一区三区|