99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CMPUT 328、代寫VAE and Diffusion Models

時間:2023-12-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment 5
Generative Models (VAE and Diffusion Models)
CMPUT **8 - Fall 2023
1 Assignment Description
The main objective in this assignment is to implement and evaluate two of the most popular generative
models, namely Variational Auto-Encoders (VAE) and Diffusion Models. Our goal is to implement
each of these models on the FashionMNIST dataset and see how such models can generate new images.
However, instead of simply training the models on the whole dataset, we would like to be able to tell the
model from which class it should generate samples. Hence, we are going to implement class-conditional VAEs
and Diffusion Models.
Figure 1: Sample images from the FashionMNIST dataset
Note: Please the watch the video provided for this assignment for better understanding the tasks and
objectives.
2 What You Need to Do
For this assignment, 5 files are given to you:
• A5 vae submission.py
• A5 vae helper.ipynb
• A5 diffusion submission.py
• A5 diffusion helper.ipynb
• classifier.pt
You only need to submit “A5 vae submission.py”, “A5 diffusion submission.py”, and weights
of your networks (“vae.pt”, “diffusion.pt”).
1
2.1 Task 1: Conditional VAE (40%)
2.1.1 A5 vae submission.py
In this file there is a skeleton of a VAE class which you are required to complete.
1. For the VAE you need to implement the following components as specified in the code file: Encoder,
mu net (for estimating the mean), logvar net (for estimating the log-variance), class embedding module
(for properly embedding the labels), and decoder (for reconstructing the samples).
2. The forward function of the VAE class must receive the batch of images and their labels, and return
the reconstructed image, estimated mean (output of mu net), and the estimated logvar (output of the
logvar net).
3. You need to fill in the “reparameterize” method of the class given mu and logvar vectors (as provided
in the code), and implement the reparameterization trick to sample from a Gaussian distribution with
mean “mu”, and log-variance “logvar”.
4. You need to fill in the “kl loss” method of the class given mu and logvar vectors, and compute the
Kullback-Leibler (KL) divergence between the Gaussian distribution with mean “mu” and log-variance
“logvar” and the standard Gaussian distribution N (0, I). Recall that if the the mean and variance of
the a Gaussian distribution are µ and σ
2
, respectively, the KL divergence with the standard Gaussian
can be simply calculated as
KL(N (µ, σ2
)∥N (0, I)) = 1
2
Xn
i=1

2
i + µ
2
i − 1 − ln (σ
2
i
)) (1)
5. You need to fill in the “get loss” method of the class given the input batch of images and their labels.
In this method you need to find the estimated mu, estimated logvar, and the reconstructed image, find
the KL divergence using mu and logvar and find the reconstruction loss between the input image and
the reconstructed image. Usually for the reconstruction loss the Binary Cross-Entropy loss is used.
6. Most importantly, you need to fill in the “generate sample” method of the class, which receives the
number of images to be generated along with their labels, and generates new samples from the VAE.
Basically, you need to sample from standard Gaussian noise, combine it with the class embedding and
pass it to the networks decoder to generate new images.
7. Please do not rename the VAE class and its methods. You can add as many extra functions/classes as
you need in this file. You can change the arguments passed to the “ init ” method of the class based
on your needs.
8. Finally, you need to complete the “load vae and generate” function at the bottom of the file, which
merely requires you to define your VAE.
2.1.2 A5 vae helper.ipynb
This file is provided to you so you can train and validate your model more simply. Once you are done with
your implementation of the VAE class you can start running the blocks of this file to train your model, save
the weights of your model, and generate new samples. You only need to specify some hyperparameters such
as batch size, optimizer, learning rate, and epochs, and of course your model.
There is also a brief description of the VAEs at the beginning of this file.
2
2.2 Task 2: Conditional Diffusion Model (60%)
2.2.1 A5 diffusion submission.py
In this file there are skeletons of a VarianceScheduler class, NoiseEstimatingNet class, and the DiffusionModel
class, which you are required to complete.
1. For the VarianceScheduler class you need to store the statistical variables required for making the
images noisy and sampling from the diffusion model, such as βt, αt, and ¯αt. You also need to complete
the “add noise” method which receives a batch of images and a batch of timesteps and computes the
noisy version of the images based on the timesteps.
2. You need to complete the NoiseEstimatingNet class, which is supposed to be a neural network (preferably a UNet) which receives the noisy version of the image, the timestep, and the label of the image,
and estimates the amount of noise added to the image. You are encouraged to look at the network
architectures you have seen in the notebooks provided to you on eClass resources. Note that you can
add extra functions and classes (e.g., for time embedding module) in this file.
3. You need to complete the “DiffusionModel” class. The forward method of the class receives a batch of
input images and their labels, randomly adds noise to the images, estimates the noise using NoiseEstimating network, and finally computes the loss between the ground truth noise and the estimated noise.
The forward method outputs the loss.
4. Most importantly, you need to fill in the “generate sample” method of the DiffusionModel class which
receives the number of images to be generated along with their labels, and generates new samples using
the diffusion model.
5. You need to fill in the “get loss” method of the class given the input batch of images and their labels.
In this method you need to find the estimated mu, estimated logvar, and the reconstructed image, find
the KL divergence using mu and logvar and find the reconstruction loss between the input image and
the reconstructed image. Usually for the reconstruction loss the Binary Cross-Entropy loss is used.
6. Most importantly, you need to fill in the “generate sample” method of the class, which receives the
number of images to be generated along with their labels, and generates new samples from the VAE.
Basically, you need to sample from standard Gaussian noise, combine it with the class embedding and
pass it to the networks decoder to generate new images.
7. Please do not rename the VarianceScheduler, NoiseEstimatingNet, and DiffusionModel classes and their
methods. You can add as many extra functions/classes as you need in this file.
8. Finally, you need to complete the “load diffusion and generate” function at the bottom of the file,
which merely requires you to define your VarianceScheduler and NoiseEstimatingNet.
2.2.2 A5 diffusion helper.ipynb
This file is provided to you so you can train and validate your model more simply. Once you are done
with your implementation of the VarianceScheduler, NoiseEstimatingNet, and DiffusionModel classes you
can start running the blocks of this file to train your model, save the weights of your model, and generate
new samples. You only need to specify some hyperparameters such as batch size, optimizer, learning rate,
and epochs, and of course your model.
3
There is also a brief description of the Diffusion Models at the beginning of this file, including how to
make the noisy images, and how to sample from the diffusion model, which could be helpful.
3 Deliverables
• The correct (working) implementation of the explained modules in the previous section.
• For the diffusion model use a number of diffusion steps less than or equal to 1000 for a roughly fast
image generation.
• We verify the quality of the images generated by your models by using a classifier trained over the
dataset. This classifier is provided to you in the helper notebooks, and without changing the code you
can run the corresponding blocks to load the classifier and apply it to your generated images.
• For the VAE model, a final accuracy of ≥ 65% gets a full mark and an accuracy of < 55% gets no mark.
You mark will linearly vary for any accuracy in between.
• For the Diffusion Model, a final accuracy of ≥ 60% gets a full mark and an accuracy of < 50% gets no
mark. You mark will linearly vary for any accuracy in between.
In the following you can see some sample outputs of a simple VAE and a simple DiffusionModel trained
on the FashionMNIST.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做 COMP33 Modern Technologies程序語言代做
  • 下一篇:ACS11001代做、 Embedded Systems程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                一区二区三区在线观看动漫| 欧美激情在线看| 欧美一二区视频| 午夜免费久久看| 欧美色网站导航| 午夜私人影院久久久久| 欧美视频一区二区| 日韩一区欧美二区| 日韩一区二区电影在线| 狠狠色丁香婷婷综合| 久久久久久久久99精品| 轻轻草成人在线| 国产日产精品1区| 99久免费精品视频在线观看| 国产精品嫩草久久久久| 91在线porny国产在线看| 亚洲第一主播视频| 久久久久久久久一| 色香蕉成人二区免费| 日本在线播放一区二区三区| 欧美一级国产精品| 久久爱www久久做| 日韩精品亚洲一区| 国产精品久久久爽爽爽麻豆色哟哟| 91在线观看高清| 久久精工是国产品牌吗| 一区二区三区中文字幕| 国产色91在线| 久久亚洲综合色一区二区三区| 欧美在线观看18| 国产电影一区二区三区| 久久er精品视频| 亚洲最快最全在线视频| 国产日本欧洲亚洲| 精品久久国产老人久久综合| 欧美日韩免费观看一区二区三区 | 国产激情视频一区二区在线观看| 自拍视频在线观看一区二区| 日韩视频一区二区| 91精彩视频在线观看| 久久综合久久鬼色中文字| 青草国产精品久久久久久| 狠狠色综合播放一区二区| 亚洲人吸女人奶水| 国产亚洲一本大道中文在线| 337p亚洲精品色噜噜狠狠| 91亚洲男人天堂| 99这里都是精品| 欧美三区在线观看| 欧美性高清videossexo| 欧美一区二区三区日韩| 日韩精品自拍偷拍| 欧美性大战久久久久久久| 日韩欧美视频在线| 亚洲日本电影在线| 黄色精品一二区| 欧美mv和日韩mv的网站| 欧美性大战久久| 亚洲婷婷国产精品电影人久久| 国产乱一区二区| 欧美成人激情免费网| 欧美日韩美女一区二区| 中文字幕乱码久久午夜不卡| 亚洲成av人片在线观看无码| 国产成都精品91一区二区三| 日韩欧美国产系列| 一区二区三区高清| 91一区二区在线观看| 久久日一线二线三线suv| 亚洲香肠在线观看| 99精品黄色片免费大全| 国产欧美日韩精品在线| 国产福利电影一区二区三区| 精品国产sm最大网站免费看| 亚洲一线二线三线视频| 在线视频中文字幕一区二区| 亚洲欧洲日韩av| 91丝袜高跟美女视频| 亚洲精品伦理在线| 色欧美88888久久久久久影院| 中文字幕亚洲不卡| 在线视频国内一区二区| 美女在线视频一区| 欧美经典一区二区| 99久久婷婷国产综合精品| 亚洲综合一二区| 精品久久国产字幕高潮| 韩国v欧美v日本v亚洲v| 一区二区三区中文字幕| av一区二区不卡| 五月婷婷久久丁香| 久久女同互慰一区二区三区| www.亚洲在线| 久久福利视频一区二区| 国产精品免费久久| 日韩午夜电影av| 在线免费视频一区二区| 黑人巨大精品欧美一区| 精品少妇一区二区三区在线播放| 99vv1com这只有精品| 高清视频一区二区| 精品一区二区成人精品| 亚洲国产毛片aaaaa无费看 | 蜜桃久久久久久久| 夫妻av一区二区| 日韩一级欧美一级| 欧美日韩精品久久久| 欧美一区二区三区视频免费播放| 波多野洁衣一区| www.av亚洲| 欧美午夜精品一区| 91福利精品视频| 成人av网址在线观看| 国产精品一卡二| 91麻豆成人久久精品二区三区| 91久久精品国产91性色tv| 精品伊人久久久久7777人| 免费一级欧美片在线观看| 日韩av一区二区三区四区| 亚洲成人激情av| 秋霞午夜av一区二区三区| 热久久国产精品| 石原莉奈一区二区三区在线观看| 日本一区中文字幕| www.亚洲在线| 国产一区欧美日韩| 男女视频一区二区| 久久久精品国产99久久精品芒果| 欧美老肥妇做.爰bbww视频| 91精品在线免费观看| 日韩一区二区免费在线观看| 久久久蜜桃精品| 午夜欧美一区二区三区在线播放| 男人的j进女人的j一区| 国产suv精品一区二区883| 972aa.com艺术欧美| 欧美日本一区二区| 久久久精品综合| 日韩电影在线观看电影| 成人av资源在线| 精品毛片乱码1区2区3区| 亚洲日本免费电影| 国产福利一区二区三区在线视频| 欧美日韩国产成人在线91| 国产日韩成人精品| 精品无人码麻豆乱码1区2区 | 日韩一级黄色大片| 成人欧美一区二区三区| 韩国av一区二区三区| 2020国产精品久久精品美国| 青青草成人在线观看| 欧美日韩精品一区二区在线播放 | 制服.丝袜.亚洲.中文.综合| 久久精品欧美日韩精品| 国产一区二区三区高清播放| 久久丝袜美腿综合| 久久成人综合网| 久久久99精品久久| 成人精品国产福利| 亚洲已满18点击进入久久| 在线看一区二区| 五月天丁香久久| 欧美成人在线直播| 成人国产精品免费| 国产精品久久久久9999吃药| 福利视频网站一区二区三区| 亚洲精品国产一区二区精华液| 日韩欧美另类在线| 亚洲小说欧美激情另类| 亚洲女子a中天字幕| 色欧美片视频在线观看在线视频| 一区二区三区成人| 久久―日本道色综合久久| 欧美色手机在线观看| 国模冰冰炮一区二区| 亚洲自拍欧美精品| 精品国产亚洲在线| 欧美三级乱人伦电影| 亚洲另类春色校园小说| 亚洲一区二区三区在线播放| 日本韩国视频一区二区| 精品亚洲欧美一区| 国产亚洲精品免费| 中文字幕一区二区日韩精品绯色| 国产1区2区3区精品美女| 亚洲一区二区三区视频在线| 久久亚洲欧美国产精品乐播| 欧美久久高跟鞋激| 欧美日韩在线直播| 欧美色图12p| 日韩欧美aaaaaa| 精品美女一区二区三区| 精品国产一区二区亚洲人成毛片| 亚洲精品国产无天堂网2021| 欧美三级资源在线| 欧美亚洲一区二区在线观看| 色妹子一区二区| www.欧美色图| 成人精品免费看| 成人性色生活片|