99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CMPUT 328、代寫VAE and Diffusion Models

時間:2023-12-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment 5
Generative Models (VAE and Diffusion Models)
CMPUT **8 - Fall 2023
1 Assignment Description
The main objective in this assignment is to implement and evaluate two of the most popular generative
models, namely Variational Auto-Encoders (VAE) and Diffusion Models. Our goal is to implement
each of these models on the FashionMNIST dataset and see how such models can generate new images.
However, instead of simply training the models on the whole dataset, we would like to be able to tell the
model from which class it should generate samples. Hence, we are going to implement class-conditional VAEs
and Diffusion Models.
Figure 1: Sample images from the FashionMNIST dataset
Note: Please the watch the video provided for this assignment for better understanding the tasks and
objectives.
2 What You Need to Do
For this assignment, 5 files are given to you:
• A5 vae submission.py
• A5 vae helper.ipynb
• A5 diffusion submission.py
• A5 diffusion helper.ipynb
• classifier.pt
You only need to submit “A5 vae submission.py”, “A5 diffusion submission.py”, and weights
of your networks (“vae.pt”, “diffusion.pt”).
1
2.1 Task 1: Conditional VAE (40%)
2.1.1 A5 vae submission.py
In this file there is a skeleton of a VAE class which you are required to complete.
1. For the VAE you need to implement the following components as specified in the code file: Encoder,
mu net (for estimating the mean), logvar net (for estimating the log-variance), class embedding module
(for properly embedding the labels), and decoder (for reconstructing the samples).
2. The forward function of the VAE class must receive the batch of images and their labels, and return
the reconstructed image, estimated mean (output of mu net), and the estimated logvar (output of the
logvar net).
3. You need to fill in the “reparameterize” method of the class given mu and logvar vectors (as provided
in the code), and implement the reparameterization trick to sample from a Gaussian distribution with
mean “mu”, and log-variance “logvar”.
4. You need to fill in the “kl loss” method of the class given mu and logvar vectors, and compute the
Kullback-Leibler (KL) divergence between the Gaussian distribution with mean “mu” and log-variance
“logvar” and the standard Gaussian distribution N (0, I). Recall that if the the mean and variance of
the a Gaussian distribution are µ and σ
2
, respectively, the KL divergence with the standard Gaussian
can be simply calculated as
KL(N (µ, σ2
)∥N (0, I)) = 1
2
Xn
i=1

2
i + µ
2
i − 1 − ln (σ
2
i
)) (1)
5. You need to fill in the “get loss” method of the class given the input batch of images and their labels.
In this method you need to find the estimated mu, estimated logvar, and the reconstructed image, find
the KL divergence using mu and logvar and find the reconstruction loss between the input image and
the reconstructed image. Usually for the reconstruction loss the Binary Cross-Entropy loss is used.
6. Most importantly, you need to fill in the “generate sample” method of the class, which receives the
number of images to be generated along with their labels, and generates new samples from the VAE.
Basically, you need to sample from standard Gaussian noise, combine it with the class embedding and
pass it to the networks decoder to generate new images.
7. Please do not rename the VAE class and its methods. You can add as many extra functions/classes as
you need in this file. You can change the arguments passed to the “ init ” method of the class based
on your needs.
8. Finally, you need to complete the “load vae and generate” function at the bottom of the file, which
merely requires you to define your VAE.
2.1.2 A5 vae helper.ipynb
This file is provided to you so you can train and validate your model more simply. Once you are done with
your implementation of the VAE class you can start running the blocks of this file to train your model, save
the weights of your model, and generate new samples. You only need to specify some hyperparameters such
as batch size, optimizer, learning rate, and epochs, and of course your model.
There is also a brief description of the VAEs at the beginning of this file.
2
2.2 Task 2: Conditional Diffusion Model (60%)
2.2.1 A5 diffusion submission.py
In this file there are skeletons of a VarianceScheduler class, NoiseEstimatingNet class, and the DiffusionModel
class, which you are required to complete.
1. For the VarianceScheduler class you need to store the statistical variables required for making the
images noisy and sampling from the diffusion model, such as βt, αt, and ¯αt. You also need to complete
the “add noise” method which receives a batch of images and a batch of timesteps and computes the
noisy version of the images based on the timesteps.
2. You need to complete the NoiseEstimatingNet class, which is supposed to be a neural network (preferably a UNet) which receives the noisy version of the image, the timestep, and the label of the image,
and estimates the amount of noise added to the image. You are encouraged to look at the network
architectures you have seen in the notebooks provided to you on eClass resources. Note that you can
add extra functions and classes (e.g., for time embedding module) in this file.
3. You need to complete the “DiffusionModel” class. The forward method of the class receives a batch of
input images and their labels, randomly adds noise to the images, estimates the noise using NoiseEstimating network, and finally computes the loss between the ground truth noise and the estimated noise.
The forward method outputs the loss.
4. Most importantly, you need to fill in the “generate sample” method of the DiffusionModel class which
receives the number of images to be generated along with their labels, and generates new samples using
the diffusion model.
5. You need to fill in the “get loss” method of the class given the input batch of images and their labels.
In this method you need to find the estimated mu, estimated logvar, and the reconstructed image, find
the KL divergence using mu and logvar and find the reconstruction loss between the input image and
the reconstructed image. Usually for the reconstruction loss the Binary Cross-Entropy loss is used.
6. Most importantly, you need to fill in the “generate sample” method of the class, which receives the
number of images to be generated along with their labels, and generates new samples from the VAE.
Basically, you need to sample from standard Gaussian noise, combine it with the class embedding and
pass it to the networks decoder to generate new images.
7. Please do not rename the VarianceScheduler, NoiseEstimatingNet, and DiffusionModel classes and their
methods. You can add as many extra functions/classes as you need in this file.
8. Finally, you need to complete the “load diffusion and generate” function at the bottom of the file,
which merely requires you to define your VarianceScheduler and NoiseEstimatingNet.
2.2.2 A5 diffusion helper.ipynb
This file is provided to you so you can train and validate your model more simply. Once you are done
with your implementation of the VarianceScheduler, NoiseEstimatingNet, and DiffusionModel classes you
can start running the blocks of this file to train your model, save the weights of your model, and generate
new samples. You only need to specify some hyperparameters such as batch size, optimizer, learning rate,
and epochs, and of course your model.
3
There is also a brief description of the Diffusion Models at the beginning of this file, including how to
make the noisy images, and how to sample from the diffusion model, which could be helpful.
3 Deliverables
• The correct (working) implementation of the explained modules in the previous section.
• For the diffusion model use a number of diffusion steps less than or equal to 1000 for a roughly fast
image generation.
• We verify the quality of the images generated by your models by using a classifier trained over the
dataset. This classifier is provided to you in the helper notebooks, and without changing the code you
can run the corresponding blocks to load the classifier and apply it to your generated images.
• For the VAE model, a final accuracy of ≥ 65% gets a full mark and an accuracy of < 55% gets no mark.
You mark will linearly vary for any accuracy in between.
• For the Diffusion Model, a final accuracy of ≥ 60% gets a full mark and an accuracy of < 50% gets no
mark. You mark will linearly vary for any accuracy in between.
In the following you can see some sample outputs of a simple VAE and a simple DiffusionModel trained
on the FashionMNIST.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做 COMP33 Modern Technologies程序語言代做
  • 下一篇:ACS11001代做、 Embedded Systems程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美高清视频一二三区| 亚洲福利一区| 国产精品网站一区| 国产一区二区三区奇米久涩 | 红桃视频国产精品| 影音先锋日韩资源| 亚洲人成网在线播放| 亚洲一区日韩在线| 久久天堂精品| 欧美日韩精品一区视频| 国产精品乱码| 亚洲高清av在线| 亚洲视频在线免费观看| 久久国产乱子精品免费女| 欧美sm极限捆绑bd| 国产精品揄拍一区二区| 亚洲国产高清在线| 亚洲一区二区在线看| 久久综合色88| 国产精品色婷婷久久58| 在线不卡a资源高清| 一区二区av| 久久这里只有精品视频首页| 欧美日韩中文字幕在线视频| 黑人巨大精品欧美一区二区| 一区二区三区四区五区视频| 久久婷婷久久| 国产精品一区二区你懂的| 亚洲国产一区二区精品专区| 欧美一区二区黄色| 国产精品爱啪在线线免费观看| 在线播放中文字幕一区| 亚洲免费在线电影| 欧美激情四色| 精品动漫3d一区二区三区| 亚洲欧美日韩成人高清在线一区| 欧美韩国日本综合| 亚洲成人在线视频播放| 久久精品99久久香蕉国产色戒| 欧美色网在线| 一区二区三区免费网站| 欧美 日韩 国产精品免费观看| 国产一区二区视频在线观看 | 免费欧美高清视频| 国产欧美va欧美不卡在线| 一本久久综合亚洲鲁鲁五月天| 美女精品一区| 亚洲国产欧美一区二区三区丁香婷| 久久国产主播精品| 国产午夜精品全部视频在线播放| 亚洲免费视频中文字幕| 国产精品成人免费| 亚洲一二三区在线| 国产精品美女| 午夜在线视频观看日韩17c| 国产精品jvid在线观看蜜臀| 一区二区三区欧美视频| 欧美精品一区二区三区很污很色的| 亚洲欧洲日韩在线| 欧美韩日高清| 一区二区三区你懂的| 欧美日韩你懂的| 一区二区三区四区五区精品| 欧美色偷偷大香| 性xx色xx综合久久久xx| 国产一区二区三区四区| 久久人91精品久久久久久不卡 | 国内揄拍国内精品久久| 久久九九免费视频| 在线欧美不卡| 欧美另类变人与禽xxxxx| 亚洲免费黄色| 国产精品卡一卡二| 欧美一区二区啪啪| 亚洲第一在线综合网站| 欧美激情性爽国产精品17p| av成人免费在线| 国产欧美精品va在线观看| 午夜精品理论片| 国产主播一区二区三区| 免费永久网站黄欧美| 99精品视频免费全部在线| 国产精品理论片| 久久精品99国产精品酒店日本| 亚洲福利专区| 国产精品av免费在线观看| 欧美一区二区黄| 亚洲黄色尤物视频| 国产精品久久久久久影院8一贰佰| 午夜影院日韩| 亚洲欧洲一区二区三区| 国产欧美欧美| 欧美日韩一区二区欧美激情 | ●精品国产综合乱码久久久久| 欧美人体xx| 久久久久久久波多野高潮日日| 亚洲精品网站在线播放gif| 国产精品综合久久久| 欧美黄网免费在线观看| 欧美一区深夜视频| 99亚洲视频| 亚洲福利视频网| 国产婷婷色一区二区三区在线| 欧美—级a级欧美特级ar全黄| 久久激情五月激情| 国产精品99久久99久久久二8| 一区二区三区在线观看欧美| 欧美午夜a级限制福利片| 美女黄色成人网| 久久爱www.| 午夜精品久久久久久久久久久久 | 亚洲成人中文| 国内自拍一区| 国产欧美日韩高清| 国产精品毛片一区二区三区| 欧美精品日韩三级| 久久野战av| 久久精品一二三区| 欧美一区二区视频免费观看| 亚洲一区美女视频在线观看免费| 亚洲精品中文字幕有码专区| 亚洲国产精品久久久久婷婷884 | 亚洲欧美在线视频观看| 一区二区三区产品免费精品久久75 | 中文精品在线| 一区二区三区高清在线观看| 亚洲精品国产精品乱码不99| 亚洲福利视频网站| 亚洲国产精品成人久久综合一区| 在线日韩av片| 亚洲人成网站精品片在线观看| 亚洲国产欧美一区二区三区同亚洲 | 亚洲午夜激情网站| 亚洲性视频网站| 亚洲免费在线看| 亚洲欧美一区二区三区在线 | 欧美日韩在线观看一区二区| 欧美精品日韩综合在线| 欧美久久久久免费| 欧美日韩一区二区免费在线观看| 欧美日韩综合精品| 国产精品久久久久国产精品日日| 国产精品麻豆欧美日韩ww| 国产精品一区视频网站| 国产一区二区黄| 亚洲第一区在线| 一本高清dvd不卡在线观看| 亚洲视频www| 新狼窝色av性久久久久久| 欧美一区二区三区免费在线看| 久久精品二区三区| 麻豆av福利av久久av| 另类综合日韩欧美亚洲| 欧美高清视频| 国产精品久久久久一区二区三区共| 国产精品视频一二| 在线观看日韩av先锋影音电影院 | 黑人中文字幕一区二区三区| 亚洲二区免费| 亚洲性夜色噜噜噜7777| 久久久久久久久一区二区| 蜜臀久久99精品久久久久久9| 欧美伦理91| 国产一区视频在线观看免费| 最新成人在线| 欧美在线电影| 欧美日韩在线看| 精品二区久久| 亚洲少妇一区| 欧美成人午夜免费视在线看片| 国产精品久久久久久久久搜平片| 在线观看亚洲| 亚洲欧洲av一区二区三区久久| 蘑菇福利视频一区播放| 国产精品久久亚洲7777| 亚洲欧洲在线一区| 久久精品国产v日韩v亚洲| 欧美日韩伊人| 亚洲激情在线视频| 欧美一区激情| 国产精品成人一区二区艾草| 亚洲国产一二三| 久久国产主播精品| 欧美日韩一区二区三区四区在线观看 | 在线日韩av片| 欧美一级黄色录像| 欧美日韩亚洲系列| 亚洲黄一区二区| 久久在线视频在线| 国产精品综合| 亚洲一区国产一区| 欧美日本亚洲视频| 亚洲国产精品久久久久久女王| 欧美资源在线| 国产精品亚洲综合久久| 99riav国产精品| 欧美成人免费网| 激情久久中文字幕| 久久成人精品一区二区三区| 国产精品一区二区在线观看|