99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做EF5070、代寫c/c++編程設計

時間:2023-11-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产一区二区三区国产| 夜夜嗨av一区二区三区网页| 欧美三级韩国三级日本一级| 亚洲不卡在线观看| 日韩一区二区在线看| 国产精品久久三| 国产欧美日韩精品在线| 一区二区三区四区精品在线视频| 91精品在线麻豆| 在线观看91精品国产麻豆| 日本在线播放一区二区三区| 日韩欧美不卡一区| 国产成人在线观看免费网站| 国产精品久久久久久久久动漫| 91麻豆精品视频| 免费精品视频在线| 成人黄色网址在线观看| 91黄视频在线| 国产午夜精品一区二区三区嫩草| 一区二区三区精品| 成人v精品蜜桃久久一区| 日本一区二区高清| 99精品热视频| 在线一区二区视频| 国产精品午夜电影| 亚洲国产精品视频| 一区二区三区久久久| 精品久久久网站| 日韩欧美在线1卡| 在线播放欧美女士性生活| 欧美日韩一区二区在线观看视频| 一区二区在线免费观看| 欧美一区二区大片| 精品视频1区2区| 色悠悠亚洲一区二区| 色av一区二区| 2023国产精华国产精品| 国产精品久99| 久久精品久久精品| 91免费视频观看| 精品国产不卡一区二区三区| 欧美国产精品劲爆| 亚洲成人在线免费| av不卡免费在线观看| 欧美一级国产精品| 亚洲一二三专区| 成人国产精品免费网站| 欧美三区在线观看| 久久美女高清视频| 欧美一区二区三区喷汁尤物| 99久久99久久久精品齐齐| 日一区二区三区| 欧美精品日韩一区| 国产女人水真多18毛片18精品视频| www激情久久| 亚洲男人的天堂在线aⅴ视频 | 欧美韩国一区二区| 欧美天堂亚洲电影院在线播放| 国产精品99久| 国产精品一二一区| 国产成人免费在线观看| 国产在线播放一区三区四| 久久国产精品99久久人人澡| 久久国产尿小便嘘嘘尿| 国内精品久久久久影院一蜜桃| 韩国v欧美v亚洲v日本v| 国产成人精品一区二区三区四区 | 丰满放荡岳乱妇91ww| 中文字幕永久在线不卡| 日韩精品专区在线影院观看| 欧美日韩一区高清| 一本一本大道香蕉久在线精品| 国产一区二区三区不卡在线观看 | 91精品福利在线| 国产成人午夜99999| 国产很黄免费观看久久| 激情另类小说区图片区视频区| 国产成人av在线影院| 一本到高清视频免费精品| 91久久人澡人人添人人爽欧美 | 成人免费毛片app| 国产成人精品免费在线| 91国在线观看| 精品免费视频一区二区| 综合久久久久久久| 五月天婷婷综合| 粗大黑人巨茎大战欧美成人| 欧美日韩国产一级二级| 国产色产综合产在线视频| 国产精品大尺度| 日韩激情一二三区| www.欧美色图| 久久一留热品黄| 一区二区三区四区五区视频在线观看| 日韩av成人高清| 91丨九色丨黑人外教| 26uuu亚洲综合色欧美| 亚洲成人免费影院| 成人黄色av电影| 欧美va亚洲va| 亚洲一二三四在线观看| 国产69精品久久99不卡| 91精品国产综合久久福利软件| 国产精品网曝门| 韩国成人在线视频| 欧美图区在线视频| 国产精品久久久久永久免费观看 | 日韩欧美国产综合| 国产精品乱子久久久久| 男人的天堂久久精品| 成人动漫av在线| 欧美不卡视频一区| 五月天网站亚洲| 色狠狠桃花综合| 亚洲三级在线免费| 99久久综合国产精品| 久久这里只有精品6| 青青草原综合久久大伊人精品| 欧美综合在线视频| 中文字幕欧美一| av在线这里只有精品| 国产日本欧美一区二区| 九九九久久久精品| 久久女同互慰一区二区三区| 久久精品99久久久| 久久人人爽爽爽人久久久| 国产真实乱对白精彩久久| 精品国产伦一区二区三区免费| 美脚の诱脚舐め脚责91| 欧美精品亚洲二区| 亚洲va国产va欧美va观看| 欧美三片在线视频观看 | 欧美私人免费视频| 亚洲男女一区二区三区| 色婷婷国产精品综合在线观看| 中文字幕日韩欧美一区二区三区| 99久久久精品免费观看国产蜜| 中文字幕永久在线不卡| 一本久久a久久精品亚洲| 一区二区欧美国产| 欧美情侣在线播放| 麻豆91在线播放| 久久久777精品电影网影网| 国产精品18久久久久久久久 | 99精品欧美一区二区三区综合在线| 国产精品高潮呻吟| 一本色道久久综合亚洲aⅴ蜜桃| 亚洲欧美色图小说| 7777精品伊人久久久大香线蕉完整版| 奇米色777欧美一区二区| 日韩美一区二区三区| 国产精品1区二区.| 一区二区三区精品久久久| 91精品免费在线观看| 国产乱子伦视频一区二区三区 | 激情国产一区二区| 亚洲国产精品成人综合| 日本高清不卡一区| 黑人精品欧美一区二区蜜桃| 亚洲欧美日韩久久| 日韩色在线观看| 91香蕉视频污在线| 国产美女久久久久| 五月婷婷综合在线| 国产精品成人免费在线| 欧美高清视频不卡网| 成人午夜视频在线观看| 午夜精品久久久久影视| 国产精品麻豆网站| 91精品福利在线一区二区三区 | 国内精品免费**视频| 亚洲美女视频在线| 久久久欧美精品sm网站| 欧美午夜电影网| 9久草视频在线视频精品| 日韩中文字幕不卡| 亚洲日本va午夜在线电影| 精品成人佐山爱一区二区| 日本电影亚洲天堂一区| 国产精品1024久久| 欧美aaa在线| 午夜国产精品一区| 亚洲精品菠萝久久久久久久| 久久久国际精品| 欧美一个色资源| 在线影院国内精品| 91香蕉视频mp4| 成人黄色网址在线观看| 精品一区二区三区免费视频| 日韩精品福利网| 亚洲国产欧美日韩另类综合 | 成人免费小视频| 2023国产精品| 日韩亚洲电影在线| 欧美一区二区在线不卡| 色综合久久66| 波多野结衣在线一区| 黄色成人免费在线| 看电视剧不卡顿的网站| 久久国产成人午夜av影院|