99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做EF5070、代寫c/c++編程設計

時間:2023-11-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产亚洲综合精品| 欧美一级视频一区二区| 国产精品家教| 国产精品极品美女粉嫩高清在线 | 欧美国产日本在线| 亚洲一区二区在线播放| 亚洲免费在线视频| 欧美制服丝袜第一页| 久久久久久久久久码影片| 欧美成人日本| 国产欧美日韩一区二区三区在线观看 | 欧美揉bbbbb揉bbbbb| 免费h精品视频在线播放| 欧美理论视频| 国产日韩欧美中文| 亚洲欧洲视频在线| 欧美一级播放| 午夜精品美女自拍福到在线 | 亚洲福利电影| 一区免费视频| 亚洲天堂偷拍| 欧美国产激情| 国产欧美一区二区精品婷婷| 国产精品国产三级国产普通话蜜臀 | 国产精品自在在线| 亚洲精品乱码久久久久| 91久久久久久久久| 午夜日韩在线观看| 欧美日韩国产精品一区| 一区久久精品| 亚洲国产精品一区二区第四页av | 欧美成人中文字幕| 国产亚洲成av人在线观看导航| 亚洲精品中文字幕有码专区| 欧美资源在线| 欧美午夜不卡在线观看免费 | 免费观看亚洲视频大全| 国产日韩欧美电影在线观看| 中文久久精品| 欧美日韩国产成人在线免费| 国产精品视频免费观看| 国产视频在线观看一区二区三区| 亚洲精品黄色| 久久久xxx| 亚洲欧美一区二区三区在线| 欧美日韩你懂的| 在线观看日韩www视频免费 | 亚洲国产成人精品女人久久久 | 亚洲日本激情| 老司机精品视频一区二区三区| 国产欧美一区二区精品秋霞影院| 中文在线不卡视频| 欧美美女福利视频| 日韩一区二区精品视频| 欧美人与禽猛交乱配| 亚洲欧洲中文日韩久久av乱码| 六月丁香综合| 亚洲激情成人| 欧美激情第9页| 亚洲精品护士| 性做久久久久久久久| 国产精品久久看| 亚洲精品国产系列| 欧美精品成人91久久久久久久| 亚洲国产精品久久久久秋霞蜜臀| 美女在线一区二区| 日韩视频一区二区在线观看 | 国产精品视频免费在线观看| 亚洲尤物在线| 国产女同一区二区| 欧美资源在线观看| 欲色影视综合吧| 你懂的视频欧美| 亚洲黄色在线| 欧美色中文字幕| 亚洲欧洲一区二区三区久久| 欧美久久视频| 午夜精品福利一区二区蜜股av| 国产亚洲欧美aaaa| 欧美大片免费| 亚洲男人的天堂在线| 国产欧美午夜| 麻豆精品精华液| 99在线热播精品免费99热| 欧美激情a∨在线视频播放| 夜夜爽av福利精品导航| 欧美网站大全在线观看| 性欧美8khd高清极品| 激情综合激情| 欧美日韩精品一区二区| 亚洲综合二区| 亚洲国产另类精品专区| 欧美日韩中文在线观看| 亚洲国产mv| 欧美日韩综合精品| 欧美亚洲三区| 亚洲区一区二| 国产精品国产精品| 卡一卡二国产精品| 中文在线一区| 亚洲第一成人在线| 欧美日韩综合| 麻豆成人在线播放| 性亚洲最疯狂xxxx高清| 亚洲七七久久综合桃花剧情介绍| 国产精品久久久久999| 欧美不卡激情三级在线观看| 午夜免费久久久久| 亚洲三级影片| 在线成人免费观看| 国产精品毛片va一区二区三区| 麻豆国产精品va在线观看不卡| 一区二区久久久久| 亚洲电影在线| 国内久久视频| 国产免费一区二区三区香蕉精| 欧美刺激午夜性久久久久久久| 欧美一二三视频| 亚洲欧美日韩国产一区| 制服诱惑一区二区| 亚洲日本成人网| 亚洲国产高清aⅴ视频| 国产一区二区三区精品久久久| 欧美午夜国产| 欧美日韩亚洲一区二区三区在线 | 亚洲国产网站| 国产精品久久久久久久久| 欧美午夜在线| 欧美日韩精品一区二区三区四区| 久久免费国产| 在线观看成人小视频| 国产精品一区二区视频| 欧美日韩一区在线视频| 欧美日韩精品一区二区天天拍小说 | 国产亚洲欧美一区| 国产精品入口66mio| 国产精品欧美日韩一区二区| 国产精品久久久久久久9999| 欧美日韩另类字幕中文| 欧美视频观看一区| 欧美日韩精品一本二本三本| 欧美成人综合在线| 欧美激情综合五月色丁香| 蜜臀av国产精品久久久久| 久久久免费观看视频| 久久久久久久欧美精品| 久久综合久久综合久久综合| 可以看av的网站久久看| 日韩一区二区久久| 国产精品99久久久久久宅男 | 欧美一区激情| 久久久精品久久久久| 久久香蕉国产线看观看av| 一区二区精品在线| 一区二区高清在线观看| 亚洲综合成人在线| 久久久国产成人精品| 久久精品国产清高在天天线| 欧美一区二区三区免费在线看| 久久久精品日韩| 鲁大师影院一区二区三区| 欧美日韩人人澡狠狠躁视频| 国产伦精品一区二区三区高清版| 国产视频欧美视频| 亚洲国产导航| 一区二区高清在线观看| 性色av一区二区三区| 久热精品视频在线观看| 欧美日韩国产成人高清视频| 欧美午夜剧场| 韩国女主播一区二区三区| 亚洲日韩欧美视频一区| 国产精品99久久久久久有的能看| 欧美一区二区啪啪| 欧美精品激情在线| 国产精品美女久久久久久免费| 精品91久久久久| 亚洲视频一区在线| 久久久精品免费视频| 欧美日韩一区二| 国内精品久久久久久影视8| 欧美精品色网| 国产伦精品一区二区三区| 亚洲精品国产无天堂网2021| 欧美一区激情| 欧美性猛片xxxx免费看久爱 | 国产精品毛片一区二区三区| 亚洲国产中文字幕在线观看| 欧美综合二区| 欧美午夜视频网站| 亚洲电影免费在线观看| 欧美一区二区三区的| 欧美性感一类影片在线播放| 亚洲国产精品传媒在线观看 | 亚洲人成啪啪网站| 久久人人97超碰国产公开结果 | 国产精品捆绑调教| 亚洲视频免费| 欧美日韩精品是欧美日韩精品| 在线日韩电影|