99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                五月激情综合色| 精品久久人人做人人爽| 欧美精品xxxxbbbb| 日韩精品一卡二卡三卡四卡无卡| 91久久久免费一区二区| 一区二区三区四区在线免费观看| 欧美视频一区二区三区在线观看| 午夜精品久久久久久久99水蜜桃| 9191精品国产综合久久久久久| 全部av―极品视觉盛宴亚洲| 久久这里只有精品6| 成人激情免费网站| 亚洲r级在线视频| 26uuu另类欧美| 色综合久久久久综合体桃花网| 亚洲制服丝袜一区| 精品日韩av一区二区| 99国产精品久| 美女视频黄久久| 自拍偷拍亚洲欧美日韩| 日韩三级av在线播放| 91丨国产丨九色丨pron| 精品一区二区三区蜜桃| 夜夜爽夜夜爽精品视频| 日韩欧美电影一区| 97精品电影院| 国产精品一区二区久激情瑜伽 | 色久综合一二码| 日本成人在线看| 亚洲欧美激情插| 国产欧美一区二区三区鸳鸯浴| 欧美午夜精品一区| www.久久精品| 国产精品99精品久久免费| 亚洲成人精品一区| 亚洲色图制服丝袜| 国产欧美日产一区| 精品国产一区二区国模嫣然| 欧美色手机在线观看| 成人深夜视频在线观看| 狠狠色伊人亚洲综合成人| 午夜激情综合网| 亚洲自拍偷拍网站| 亚洲另类色综合网站| 欧美激情一区二区三区| 久久亚洲精精品中文字幕早川悠里 | 精品国产区一区| 欧美日韩黄色一区二区| 91浏览器打开| 色婷婷精品久久二区二区蜜臀av| 粉嫩绯色av一区二区在线观看| 久久成人免费日本黄色| 蜜臀久久久久久久| 美腿丝袜亚洲三区| 久久99深爱久久99精品| 激情文学综合网| 国产最新精品免费| 高清国产一区二区三区| 成人h精品动漫一区二区三区| 九九**精品视频免费播放| 九九热在线视频观看这里只有精品| 日本aⅴ精品一区二区三区| 开心九九激情九九欧美日韩精美视频电影 | 亚洲图片欧美视频| 一区二区三区丝袜| 亚洲国产日韩在线一区模特 | 亚洲综合图片区| 天天综合天天综合色| 日日夜夜免费精品| 免费观看成人av| 国产一区二区女| 91麻豆国产福利精品| 欧美喷潮久久久xxxxx| 精品裸体舞一区二区三区| 2020国产精品自拍| 中文字幕制服丝袜一区二区三区 | 成人av免费在线观看| 91丨porny丨首页| 4438亚洲最大| 中文成人综合网| 亚洲午夜在线观看视频在线| 男人操女人的视频在线观看欧美| 国产精品综合二区| 欧美色涩在线第一页| 欧美精品一区二区高清在线观看| 国产欧美一区二区精品性| 亚洲综合在线视频| 精久久久久久久久久久| 一本色道久久综合狠狠躁的推荐 | 精品久久99ma| 亚洲丝袜美腿综合| 久久不见久久见免费视频7| 99re热这里只有精品视频| 欧美精品第1页| 综合色天天鬼久久鬼色| 精品亚洲免费视频| 欧美日韩国产综合草草| 国产片一区二区| 久久精品国产在热久久| 在线亚洲免费视频| 亚洲国产高清不卡| 韩日精品视频一区| 777午夜精品视频在线播放| 欧美专区日韩专区| 91亚洲精品久久久蜜桃| 精品理论电影在线| 亚洲最大色网站| 成人丝袜视频网| 欧美一区三区四区| 一区二区三区在线播| kk眼镜猥琐国模调教系列一区二区| 日韩一区二区免费在线观看| 亚洲激情六月丁香| 成人黄色小视频| 欧美激情一区不卡| 国产乱码字幕精品高清av| 91精品婷婷国产综合久久竹菊| 亚洲精品菠萝久久久久久久| www.视频一区| 中文字幕字幕中文在线中不卡视频| 国产在线看一区| 欧美一区二区三区的| 日韩黄色免费电影| 精品污污网站免费看| 同产精品九九九| 亚洲一区二区视频在线观看| 国产乱人伦精品一区二区在线观看| 欧美性感一区二区三区| 一色屋精品亚洲香蕉网站| 高清shemale亚洲人妖| 日韩精品中文字幕在线不卡尤物 | 欧美一区二区视频在线观看2020| 亚洲国产日韩a在线播放性色| 色网综合在线观看| 一区二区三区在线影院| 色狠狠色狠狠综合| 亚洲成人激情综合网| 91麻豆精品国产无毒不卡在线观看| 亚洲尤物在线视频观看| 欧美日韩亚洲综合在线 | 亚洲黄色av一区| 色综合天天综合狠狠| 亚洲视频精选在线| 精品视频免费看| 免播放器亚洲一区| 亚洲国产成人一区二区三区| 不卡高清视频专区| 亚洲美女屁股眼交3| 欧美日韩午夜在线视频| 蜜臀久久99精品久久久久久9 | 亚洲国产成人一区二区三区| www.日本不卡| 性欧美疯狂xxxxbbbb| 久久综合色天天久久综合图片| 成人综合日日夜夜| 亚洲一区影音先锋| 2014亚洲片线观看视频免费| 丁香桃色午夜亚洲一区二区三区| 天天色天天爱天天射综合| 中文字幕精品综合| 成人av资源在线观看| 午夜亚洲国产au精品一区二区| 日韩一级欧美一级| 成人黄页在线观看| 日韩黄色免费网站| 国产精品久久毛片av大全日韩| 欧美在线观看一区| 国产精品99久久久久久似苏梦涵 | 久久久久久久久97黄色工厂| 日韩中文字幕av电影| 欧美mv日韩mv国产网站app| 成人av午夜影院| 青青草原综合久久大伊人精品| 中文字幕av一区 二区| 欧美日韩国产综合久久| 暴力调教一区二区三区| 男女性色大片免费观看一区二区| 综合久久给合久久狠狠狠97色| 6080yy午夜一二三区久久| av欧美精品.com| 国产夫妻精品视频| 蜜臀久久99精品久久久画质超高清| 亚洲桃色在线一区| 久久精品人人做人人爽人人| 69成人精品免费视频| 色欧美乱欧美15图片| 亚洲欧美国产77777| bt欧美亚洲午夜电影天堂| 亚洲在线视频一区| 国产日韩欧美一区二区三区乱码| 欧美日韩激情在线| 色av一区二区| 99精品欧美一区二区三区小说| 韩国一区二区三区| 久久99精品网久久| 青青草97国产精品免费观看无弹窗版 | 欧美一区二区福利在线| 欧美在线不卡一区| 一本大道av伊人久久综合| 成人国产亚洲欧美成人综合网|