99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          美女尤物久久精品| 国内精品久久久久久久影视麻豆| 中国成人黄色视屏| 精品成人一区二区| 国产精品视频免费| 欧美日韩一区二区三区在线看| 久久精品中文字幕一区二区三区| 亚洲私人影院在线观看| 最新国产の精品合集bt伙计| 国产视频欧美| 国产欧美一区二区精品性 | 欧美日韩精品系列| 玖玖精品视频| 久久爱91午夜羞羞| 午夜久久久久| 亚洲综合视频一区| 中文av字幕一区| 日韩亚洲欧美在线观看| 亚洲国产综合在线| 亚洲高清视频一区二区| 伊人久久成人| 激情六月综合| 黄色一区三区| 一区二区亚洲精品| 樱花yy私人影院亚洲| 黄页网站一区| 在线观看久久av| 在线看国产一区| 亚洲国产精品成人综合色在线婷婷| 国产精品一区二区在线观看网站 | 欧美午夜免费| 欧美日韩一区二区三区| 欧美日韩1区2区| 国产精品mv在线观看| 国产精品美女在线观看| 国产模特精品视频久久久久 | 国产一区二区成人| 国内成人精品一区| 亚洲国产视频直播| 一区二区三区欧美在线观看| 一区二区三区日韩| 性欧美长视频| 久久亚洲图片| 欧美视频在线一区| 国产日产精品一区二区三区四区的观看方式| 国产精品亚洲精品| 影音先锋一区| 一区二区三区精品| 久久精品国产一区二区三| 玖玖综合伊人| 欧美日韩中文字幕| 黄色成人在线免费| 在线一区免费观看| 欧美在线免费| 欧美激情自拍| 国产亚洲午夜高清国产拍精品| 国内外成人免费激情在线视频| 亚洲区第一页| 欧美一区二区视频在线观看| 老牛国产精品一区的观看方式| 欧美日韩高清区| 国产一区二区欧美| 一本一本久久| 久久亚洲国产成人| 国产精品毛片a∨一区二区三区| 激情欧美一区二区| 亚洲中无吗在线| 欧美精品一区二区在线观看| 国产一区二区三区最好精华液| 亚洲精品久久久久久一区二区| 亚洲欧美影音先锋| 欧美色欧美亚洲另类二区| 亚洲国产精品高清久久久| 亚洲一区二三| 欧美日韩亚洲91| 亚洲精品国久久99热| 久久精品国产999大香线蕉| 国产精品成人在线| 亚洲精品综合久久中文字幕| 久久精品人人做人人爽电影蜜月| 国产精品国产三级国产| 日韩一区二区免费高清| 欧美成人精品h版在线观看| 国产曰批免费观看久久久| 亚洲免费在线视频| 国产精品超碰97尤物18| 9色精品在线| 欧美日本韩国一区二区三区| 亚洲国产欧美精品| 欧美jjzz| 亚洲精品乱码久久久久久蜜桃麻豆 | 亚洲国产精品视频| 免费日韩成人| 亚洲国产天堂久久国产91| 免费91麻豆精品国产自产在线观看| 国产欧美1区2区3区| 性欧美18~19sex高清播放| 国产精品免费在线| 欧美亚洲综合另类| 国产视频一区在线| 久久精品视频导航| 亚洲国产成人高清精品| 免费日韩成人| 亚洲精品国产日韩| 欧美日韩亚洲高清一区二区| 亚洲婷婷综合久久一本伊一区| 欧美日韩精品免费看| 亚洲先锋成人| 国产欧美一区二区色老头 | 久久精品官网| 亚洲高清不卡| 欧美日韩亚洲一区| 亚洲免费在线观看视频| 国产视频精品va久久久久久| 久久精品国产免费观看| 亚洲福利视频一区| 欧美日韩三级电影在线| 午夜精品久久久久久99热| 黄色一区三区| 欧美日韩国产免费观看| 性欧美8khd高清极品| 怡红院精品视频| 欧美日韩四区| 久久精品亚洲一区二区| 日韩视频一区二区| 国产亚洲va综合人人澡精品| 欧美肥婆bbw| 性一交一乱一区二区洋洋av| 在线成人中文字幕| 国产精品每日更新| 欧美成人网在线| 欧美一区二区久久久| 亚洲毛片在线免费观看| 国产亚洲欧洲一区高清在线观看| 欧美sm视频| 欧美资源在线| 亚洲午夜视频在线| 亚洲精选视频在线| 在线看日韩av| 国产香蕉97碰碰久久人人| 欧美日韩亚洲国产精品| 久久综合电影一区| 销魂美女一区二区三区视频在线| 最近中文字幕mv在线一区二区三区四区| 国产精品久久91| 欧美日韩国产一区| 欧美成人精品影院| 久久亚洲国产成人| 香蕉视频成人在线观看| 中文成人激情娱乐网| 亚洲精品久久久久久久久久久久| 国产美女扒开尿口久久久| 欧美网站在线观看| 欧美日韩精品不卡| 欧美福利一区二区| 欧美成人中文字幕| 免费日韩一区二区| 久久手机精品视频| 久久精品国产免费看久久精品| 亚洲欧美中文日韩v在线观看| 一本色道久久综合亚洲精品不卡 | **性色生活片久久毛片| 国产欧美一区二区视频| 欧美性猛交视频| 欧美午夜精品伦理| 欧美午夜一区二区| 欧美天堂亚洲电影院在线播放 | 日韩一区二区精品| 日韩一级不卡| 亚洲视频图片小说| 亚洲免费在线观看视频| 亚洲欧美日韩国产中文| 亚洲欧美第一页| 午夜精品视频在线观看| 欧美综合国产精品久久丁香| 欧美影片第一页| 久久久精品国产免费观看同学| 久久深夜福利免费观看| 男男成人高潮片免费网站| 欧美激情一级片一区二区| 国产精品va在线播放我和闺蜜| 国产精品国产三级国产专区53| 国产精品www色诱视频| 国产精品自拍网站| 在线欧美不卡| 一本一本久久| 久久精品国产第一区二区三区| 久久综合五月天婷婷伊人| 欧美激情综合| 国产精品婷婷午夜在线观看| 国产午夜精品全部视频播放| 激情久久久久久久久久久久久久久久| 亚洲电影观看| 亚洲视频在线观看一区| 久久精品国产一区二区三区免费看| 久久这里有精品15一区二区三区| 欧美日韩第一区| 国内精品美女在线观看| 亚洲麻豆av| 久久精品青青大伊人av|