99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

MATH4063代做、代寫C++編程設計

時間:2023-11-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



1 MATH**3
The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
AUTUMN SEMESTER 2022-2023
MATH**3 - SCIENTIFIC COMPUTING AND C++
Coursework 1 - Released 30th October 2023, 4pm
Your work should be submitted electronically via the MATH**3 Moodle page by 12noon on Monday 20th
November (unless you have arranged an extension). Since this work is assessed, your submission must be
entirely your own work (see the University’s policy on Academic Misconduct). Submissions up to five working
days late will be marked, but subject to a penalty of 5% of the maximum mark per working day.
The marks for each question are given by means of a figure enclosed by square brackets, eg [20]. There are
a total of 100 marks available for the coursework and it contributes 45% to the module. The marking rubric
available on Moodle will be applied to each full question to further break down this mark.
You are free to name the functions you write as you wish, but bear in mind these names should be meaningful.
Functions should be grouped together in .cpp files and accessed in other files using correspondingly named
.hpp files.
All calculations should be done in double precision.
A single zip file containing your full solution should be submitted on Moodle. This zip file should contain three
folders called main, source and include, with the following files in them:
main:
• q1d.cpp
• q2c.cpp
• q3c.cpp
• q4b.cpp
source:
• vector.cpp
• dense_matrix.cpp
• csr_matrix.cpp
• linear_algebra.cpp
• finite_volume.cpp
include:
• vector.hpp
• dense_matrix.hpp
• csr_matrix.hpp
• linear_algebra.hpp
• finite_volume.hpp
Prior to starting the coursework, please download the CW1_code.zip from Moodle and extract the files. More
information about the contents of the files included in this zip file is given in the questions below.
Hint: When using a C++ struct with header files, the whole struct needs to be defined fully in the header file,
and the header file included in the corresponding .cpp file. Include guards should also be used.
MATH**3 Turn Over
2 MATH**3
In this coursework you will build a 2D finite volume solver for the following PDE boundary value problem
−𝛥w**6; + ∇ ⋅ (bw**6;) = 𝑓 (w**9;, 𝑦) ∈ 𝛺, (1)
w**6; = 𝑔, (w**9;, 𝑦) ∈ 𝜕𝛺, (2)
where 𝑓 ∶ 𝛺 → **7;, 𝑔 ∶ 𝜕𝛺 → **7; and b ∶ 𝛺 → **7;2
.
In order to solve this problem, you will first define a sparse matrix structure, then write functions to apply
the GMRES linear algebra solver and finally build and solve the linear system arising from the finite volume
approximation of (1)-(2).
1. Matrices arising from the discretisation of partial differential equations using, for example, finite volume
methods, are generally sparse in the sense that they have many more zero entries than nonzero ones.
We would like to avoid storing the zero entries and only store the nonzero ones.
A commonly employed sparse matrix storage format is the Compressed Sparse Row (CSR) format. Here,
the nonzero entries of an 𝑛 × 𝑛 matrix are stored in a vector matrix_entries, the vector column_no gives
the column position of the corresponding entries in matrix_entries, while the vector row_start of length
𝑛+1 is the list of indices which indicates where each row starts in matrix_entries. For example, consider
the following:
𝐴 =




8 0 0 2
0 3 1 0
0 0 4 0
6 0 0 7





matrix_entries = (8 2 3 1 4 6 7)
column_no = (0 3 1 2 2 0 3)
row_start = (0 2 4 5 7)
Note, in the above, C++ indexing has been assumed, i.e, indices begin at 0.
(a) In csr_matrix.hpp, define a C++ struct called csr_matrix to store a matrix in CSR format. In
addition to matrix_entries, column_no and row_start, you should store the number of rows of the
matrix explicitly.
(b) In csr_matrix.cpp, write a C++ function that will set up the matrix 𝐴 from above in CSR format.
Remember, if you are using dynamically allocated memory, then you should also have corresponding
functions that will deallocate the memory you have set up.
(c) In csr_matrix.cpp, write a C++ function that takes as input a matrix 𝐴 stored in CSR format and a
vector x and computes the product 𝐴x. The prototype for your function should be:
void MultiplyMatrixVector ( csr_matrix & matrix ,double* vector ,
double* productVector )
Hence, the input vector and the output productVector should be pointers to dynamically allocated
arrays. In particular, it should be assumed that productVector has been preallocated to the correct
size already.
(d) By setting a vector x = (4, −1, 3, 6)⊤, write a test program in q1d.cpp to compute and print to the
screen the product 𝐴x, where 𝐴 is the matrix given above.
[20 marks]
MATH**3
3 MATH**3
2. Suppose we wish to find x ∈ **7;𝑛
such that
𝐴x = b, (3)
where 𝐴 is an 𝑛 × 𝑛 matrix and b ∈ **7;𝑛
.
One algorithm for solving this problem is the (restarted) Generalised Minimal RESidual (GMRES) algorithm.
The method is too complicated to explain here, but works to quickly find approximations x𝑘 = x0 + y𝑘
where y𝑘 ∈ 𝒦𝑘 ∶= Span{𝐴q0
, 𝐴2q0 … 𝐴𝑘q0
} for 𝑘 = 1, 2, …. y𝑘 is chosen to minimise the residual
‖b − 𝐴x𝑘‖2
.
Here x0
is some initial guess vector and q0
is the normed initial residual
q0 =
b − 𝐴x0
‖b − 𝐴x0‖2
.
𝒦𝑘 is called a Krylov subspace of 𝐴.
The algorithm stops when ‖b − 𝐴x𝑘‖2 < tol for some termination tolerance tol. As the method becomes
very memory inefficient when 𝑘 is large, the method is restarted every so often and x𝑘 reset to be x0
.
An incomplete GMRES algorithm function PerformGMRESRestarted() has been written in
linear_algebra.cpp.
A key component of the GMRES algorithm is the Arnoldi iteration that seeks to find an orthonormal basis
of 𝒦𝑘. At the 𝑘th step of the iteration, the Arnoldi method constructs the following matrix decomposition
of 𝐴:
𝐴𝑄𝑘 = 𝑄𝑘+1𝐻̃
𝑘,
where the columns of 𝑄𝑘 (𝑄𝑘+1) contain the orthonormal basis of 𝒦𝑘 (𝒦𝑘+1, resp.) and 𝐻̃
𝑘 is a (𝑘+1)× 𝑘
upper Hessenberg matrix. That is, a matrix that is nearly upper triangular but has non-zero components
on the first subdiagonal.
The 𝑘th step of the Arnoldi algorithm is:
Algorithm 1 One step of the Arnoldi Iteration.
Require: 𝑘 > 0, 𝐴, 𝑄𝑘:
1: Let q𝑖 be the 𝑖th column of 𝑄𝑘.
2: Let h = {ℎ𝑖
}
𝑘+1
𝑖=1 be a vector of length 𝑘 + 1.
3: Compute q𝑘+1 = 𝐴q𝑘
4: for 𝑖 = 1, … , 𝑘 do
5: ℎ𝑖 = q𝑘+1 ⋅ q𝑖
.
6: q𝑘+1 = q𝑘+1 − ℎ𝑖q𝑖
.
7: end for
8: ℎ𝑘+1 = ‖q𝑘+1‖2
.
9: q𝑘+1 = q𝑘+1/ℎ𝑘.
10: 𝑄𝑘+1 = [𝑄𝑘, q𝑘+1].
11: return 𝑄𝑘+1 and h.
(a) In linear_algebra.cpp, write a C++ function which implements one step of the Arnoldi iteration
method defined above.
The function should have the following prototype
void PerformArnoldiIteration ( csr_matrix & matrix ,
dense_matrix & krylov_matrix , int k, double* hessenberg )
MATH**3 Turn Over
4 MATH**3
Here, matrix is 𝐴, k is the step of the iteration to perform, krylov_matrix is the matrix containing
the orthonormal basis, where each row is a basis vector. Upon entry, krylov_matrix should have 𝑘
rows and upon exit it should contain 𝑘 + 1 rows, with the new basis vector in the last row.
Finally, upon exit, hessenberg should contain h, which is the final column of 𝐻̃
𝑘. You may assume that
hessenberg has been preallocated to be of length 𝑘+1 before the call to PerformArnoldiIteration.
Your function should make use, where possible, of prewritten functions defined in dense_matrix.cpp
and vector.cpp. Your code should also make use of the matrix multiplication function from Q1.
Once you have written PerformArnoldiIteration() the GMRES function should function as intended.
Note: Storage of the basis functions in the rows of krylov_matrix, rather than in the columns,
improves efficiency of the code.
(b) In csr_matrix.cpp, write a C++ function that will read from a file a matrix already stored in CSR
format and a vector. You may assume the file structures are as in matrix1.dat and vector1.dat on
Moodle and you may use these data files to test your function.
(c) Write a test program in file q2c.cpp that will read in the matrix 𝐴 from matrix2.dat and the vector
x from vector2.dat, compute b = 𝐴x, then use PerformGMRESRestarted() with the default input
arguments to find an approximation x̂to x. At the end of the calculation, print to the screen the error
‖x − ̂ x‖2
.
[30 marks]
3. The file mesh.hpp contains a struct that defines a mesh data structure mesh for a general mesh comprising
axis-aligned rectangular cells. In particular, each cell in the mesh has an additional struct called
cell_information that contains, among other things, information about the cell neighbours. Familiarise
yourself with these data structures by looking in mesh.hpp.
mesh.cpp contains two functions that will generate meshes, they are:
• ConstructRectangularMesh() - this constructs a mesh on the rectangular domain 𝛺𝑅 = [𝑎, 𝑏] ×
[𝑐, 𝑑].
• ConstructLShapedMesh() - this constructs a mesh on the L-shaped domain 𝛺𝐿 = 𝛺𝑅\𝛺𝐶, where
𝛺𝐶 = [(𝑎 + 𝑏)/2, 𝑏] × [(𝑐 + 𝑑)/2, 𝑑].
(a) In finite_volume.cpp, write a C++ function that will create the storage for a matrix 𝐴 in CSR format
and a RHS vector F required for a cell-centred finite volume method for solving (1)-(2). You should
follow the procedure outlined in the Unit 6 lecture notes. As one of the inputs, your function should
take in a variable of type mesh.
(b) In csr_matrix.cpp, write a C++ function that will output to the screen a matrix stored in CSR format
in the same style as in matrix1.dat.
(c) In Q3c.cpp, write a program that will ask the user to supply the number of cells in each coordinate
direction of a rectangular mesh, sets up the mesh using ConstructRectangularMesh() then calls the
function from part (a) to set up the corresponding matrix and finally prints it to the screen using the
function from part (b).
[30 marks]
MATH**3
5 MATH**3
4. (a) In finite_volume.cpp, write a function that takes in a mesh, uses the function from Q3(a) to construct
𝐴 and F, then populates it with the correct entries to solve problem (1)-(2) using the cell-centred finite
volume method, as outlined in the Unit 6 notes. The function should also take as input the functions
𝑓(w**9;, 𝑦), b(w**9;, 𝑦) and the Dirichlet boundary function 𝑔(w**9;, 𝑦).
(b) In Q4b.cpp, write a main program to ask the user to select from the following problems and supply
the number of cells in each coordinate direction.
1. • Rectangular Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = 0.
2. • L-shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 8𝜋2
cos(2𝜋w**9;) cos(2𝜋𝑦);
• 𝑔(w**9;, 𝑦) = cos(2𝜋w**9;) cos(2𝜋𝑦);
• b = 0.
3. • Rectangular Mesh - 𝑎 = −1, 𝑏 = 1, 𝑐 = −1 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = (10, 10)⊤.
4. • L-Shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 0;

𝑔(w**9;, 𝑦) = {
1, w**9; = 0, 0.25 < 𝑦 < 0.75,
0, otherwise;
• b = (
50𝑦
√w**9;2+𝑦2
,
−50w**9;
√w**9;2+𝑦2
)

.
The code should then set up the linear system arising from the finite volume discretisation and solve
the system
𝐴uℎ = F
using PerformGMRESRestarted().
Finally, print to the screen the maximum value of uℎ.
Hint: Once you have computed uℎ you can output it to together with the mesh to a file using
OutputSolution() in mesh.cpp. plot_solution.py can then be used to plot the solution in Python.
Note, if you are unable to get the iterative solver from Q2 working, then you may create the finite volume
matrix 𝐴 as if it were a dense matrix (i.e store all the zero entries) and use the function
PerformGaussianElimination() from dense_matrix.cpp to solve the system of equations. This will incur
a small penalty. Note, an illustration of the use of PerformGaussianElimination() can be found in the
main program inside gaussian_elimination_test.cpp.
[20 marks]
MATH**3 End

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP9021代做、代寫Python程序語言
  • 下一篇:代寫CSE 30程序、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美系列精品| 亚洲一区二区影院| 久久夜色精品国产| 亚洲精品老司机| 欧美性色视频在线| 久久国产黑丝| 99国产精品久久久久久久成人热 | 久久爱91午夜羞羞| 99在线热播精品免费| 在线欧美福利| 国产私拍一区| 国产精品永久在线| 欧美午夜视频在线观看| 免费观看在线综合| 久久精品欧美日韩精品| 亚洲一级黄色片| 一区二区三区黄色| 亚洲美女中文字幕| 亚洲精品美女| 亚洲精品欧美日韩| 亚洲国产日韩在线一区模特| 国内精品国产成人| 国产日韩欧美高清免费| 欧美性猛交一区二区三区精品| 欧美a级片网| 欧美国产91| 欧美激情一区二区三区全黄 | 国产在线高清精品| 国产婷婷色一区二区三区在线 | 国产午夜精品美女视频明星a级 | 国产亚洲人成a一在线v站| 国产精品入口夜色视频大尺度| 欧美日韩免费观看一区二区三区| 欧美精品一区二区三区久久久竹菊| 免费久久99精品国产| 久久人人看视频| 男人插女人欧美| 欧美大片在线观看一区| 欧美国产三级| 欧美天堂在线观看| 国产精品麻豆欧美日韩ww | 国产美女诱惑一区二区| 国产日韩精品一区二区| 韩国精品久久久999| 激情校园亚洲| 亚洲精品日韩在线| 亚洲午夜国产成人av电影男同| 亚洲夜间福利| 久久免费视频这里只有精品| 免费影视亚洲| 国产精品免费看| 韩国三级在线一区| 一本久道久久久| 欧美日本国产| 国产精品高清网站| 国产欧美韩国高清| 亚洲大片av| 99riav1国产精品视频| 亚洲尤物在线视频观看| 久久精品一区二区| 欧美日韩国产一区| 国产午夜精品美女视频明星a级| 在线观看日韩www视频免费| 99re6这里只有精品| 欧美一区二区日韩一区二区| 伊人色综合久久天天| 亚洲乱码久久| 久久精品日产第一区二区| 欧美理论在线播放| 国产一区二区三区在线观看精品| 亚洲国产高清aⅴ视频| 亚洲综合丁香| 欧美精品97| 国内成+人亚洲| 亚洲午夜激情免费视频| 麻豆av一区二区三区久久| 国产精品久久久| 亚洲激情视频网| 久久久在线视频| 国产精品久久久久久久7电影| 亚洲国产裸拍裸体视频在线观看乱了中文| 一区二区三区福利| 欧美激情视频一区二区三区不卡| 国产伦精品一区二区三区在线观看 | 原创国产精品91| 欧美在线高清| 国产精品婷婷| 亚洲免费在线精品一区| 欧美日韩国产综合久久| 亚洲国产精品第一区二区三区 | 欧美一区视频在线| 国产精品高潮粉嫩av| 99ri日韩精品视频| 欧美日韩成人一区二区三区| 亚洲高清影视| 欧美1级日本1级| 91久久中文字幕| 欧美理论视频| 亚洲视频在线观看一区| 欧美日韩在线不卡| 一区二区三区视频免费在线观看| 欧美大片免费观看| 亚洲精品久久久久久久久| 欧美韩日亚洲| 一区二区三区蜜桃网| 欧美视频在线视频| 亚洲欧美日韩国产中文在线| 国产精品v欧美精品v日本精品动漫 | 久久亚洲一区二区| 亚洲国产成人久久综合一区| 欧美va亚洲va香蕉在线| 亚洲六月丁香色婷婷综合久久| 欧美成人国产一区二区| 亚洲精品一区二区三区蜜桃久| 欧美日韩精品高清| 亚洲视频自拍偷拍| 国产亚洲激情| 免费一级欧美在线大片| 99精品欧美| 国产偷自视频区视频一区二区| 久久国产福利| 亚洲精选一区| 国产欧美日韩一区二区三区在线观看| 欧美有码视频| 亚洲精品黄网在线观看| 国产精品美女999| 麻豆精品在线观看| 亚洲视频在线二区| 激情另类综合| 国产精品成人v| 欧美不卡一区| 久久av资源网| 99精品热6080yy久久| 国产日韩欧美亚洲| 欧美精品日韩精品| 欧美在线视屏| 亚洲午夜一区二区| 亚洲电影免费在线观看| 国产精品久久久久91| 免费观看成人鲁鲁鲁鲁鲁视频 | 国产精品大片wwwwww| 久久久久久国产精品一区| 一区二区三区高清视频在线观看| 国产一区二区三区电影在线观看| 欧美极品一区二区三区| 久久免费午夜影院| 午夜日韩在线观看| 一区二区三区产品免费精品久久75 | 久久国产黑丝| 在线视频亚洲一区| 国产一区二区三区电影在线观看| 亚洲精品社区| 亚洲成色www8888| 这里只有精品在线播放| 国产在线欧美日韩| 欧美日韩在线一区二区| 亚洲永久在线观看| 一区二区三区视频在线| 在线播放中文一区| 国产精品亚洲第一区在线暖暖韩国| 午夜精品剧场| 亚洲欧美日韩视频二区| 亚洲精品乱码久久久久久日本蜜臀| 国产精品青草久久| 久久亚洲精选| 久久久久久婷| 欧美一级欧美一级在线播放| 99热在线精品观看| 国产在线视频欧美一区二区三区| 欧美日韩综合久久| 欧美高清不卡| 女女同性精品视频| 牛人盗摄一区二区三区视频| 久久久国产午夜精品| 亚洲欧美视频一区| 在线日韩av| 亚洲欧洲一区二区三区| 黄色一区三区| 国外成人在线视频网站| 国内免费精品永久在线视频| 国产嫩草一区二区三区在线观看| 国产精品国产三级国产普通话蜜臀 | 狠狠色香婷婷久久亚洲精品| 国产午夜精品久久久久久免费视 | 99国产麻豆精品| 亚洲国产欧洲综合997久久| 国语自产精品视频在线看| 亚洲国产精品久久久久秋霞影院| 伊人久久综合| 亚洲风情在线资源站| 影院欧美亚洲| 伊人久久亚洲影院| 亚洲激情一区| 99国产精品久久久久老师| 亚洲欧美在线另类| 欧美一区二区视频观看视频| 久久国产精品色婷婷| 久久成人免费| 欧美顶级艳妇交换群宴| 欧美成人一区二区|