99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

MATH4063代做、代寫C++編程設計

時間:2023-11-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



1 MATH**3
The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
AUTUMN SEMESTER 2022-2023
MATH**3 - SCIENTIFIC COMPUTING AND C++
Coursework 1 - Released 30th October 2023, 4pm
Your work should be submitted electronically via the MATH**3 Moodle page by 12noon on Monday 20th
November (unless you have arranged an extension). Since this work is assessed, your submission must be
entirely your own work (see the University’s policy on Academic Misconduct). Submissions up to five working
days late will be marked, but subject to a penalty of 5% of the maximum mark per working day.
The marks for each question are given by means of a figure enclosed by square brackets, eg [20]. There are
a total of 100 marks available for the coursework and it contributes 45% to the module. The marking rubric
available on Moodle will be applied to each full question to further break down this mark.
You are free to name the functions you write as you wish, but bear in mind these names should be meaningful.
Functions should be grouped together in .cpp files and accessed in other files using correspondingly named
.hpp files.
All calculations should be done in double precision.
A single zip file containing your full solution should be submitted on Moodle. This zip file should contain three
folders called main, source and include, with the following files in them:
main:
• q1d.cpp
• q2c.cpp
• q3c.cpp
• q4b.cpp
source:
• vector.cpp
• dense_matrix.cpp
• csr_matrix.cpp
• linear_algebra.cpp
• finite_volume.cpp
include:
• vector.hpp
• dense_matrix.hpp
• csr_matrix.hpp
• linear_algebra.hpp
• finite_volume.hpp
Prior to starting the coursework, please download the CW1_code.zip from Moodle and extract the files. More
information about the contents of the files included in this zip file is given in the questions below.
Hint: When using a C++ struct with header files, the whole struct needs to be defined fully in the header file,
and the header file included in the corresponding .cpp file. Include guards should also be used.
MATH**3 Turn Over
2 MATH**3
In this coursework you will build a 2D finite volume solver for the following PDE boundary value problem
−𝛥w**6; + ∇ ⋅ (bw**6;) = 𝑓 (w**9;, 𝑦) ∈ 𝛺, (1)
w**6; = 𝑔, (w**9;, 𝑦) ∈ 𝜕𝛺, (2)
where 𝑓 ∶ 𝛺 → **7;, 𝑔 ∶ 𝜕𝛺 → **7; and b ∶ 𝛺 → **7;2
.
In order to solve this problem, you will first define a sparse matrix structure, then write functions to apply
the GMRES linear algebra solver and finally build and solve the linear system arising from the finite volume
approximation of (1)-(2).
1. Matrices arising from the discretisation of partial differential equations using, for example, finite volume
methods, are generally sparse in the sense that they have many more zero entries than nonzero ones.
We would like to avoid storing the zero entries and only store the nonzero ones.
A commonly employed sparse matrix storage format is the Compressed Sparse Row (CSR) format. Here,
the nonzero entries of an 𝑛 × 𝑛 matrix are stored in a vector matrix_entries, the vector column_no gives
the column position of the corresponding entries in matrix_entries, while the vector row_start of length
𝑛+1 is the list of indices which indicates where each row starts in matrix_entries. For example, consider
the following:
𝐴 =




8 0 0 2
0 3 1 0
0 0 4 0
6 0 0 7





matrix_entries = (8 2 3 1 4 6 7)
column_no = (0 3 1 2 2 0 3)
row_start = (0 2 4 5 7)
Note, in the above, C++ indexing has been assumed, i.e, indices begin at 0.
(a) In csr_matrix.hpp, define a C++ struct called csr_matrix to store a matrix in CSR format. In
addition to matrix_entries, column_no and row_start, you should store the number of rows of the
matrix explicitly.
(b) In csr_matrix.cpp, write a C++ function that will set up the matrix 𝐴 from above in CSR format.
Remember, if you are using dynamically allocated memory, then you should also have corresponding
functions that will deallocate the memory you have set up.
(c) In csr_matrix.cpp, write a C++ function that takes as input a matrix 𝐴 stored in CSR format and a
vector x and computes the product 𝐴x. The prototype for your function should be:
void MultiplyMatrixVector ( csr_matrix & matrix ,double* vector ,
double* productVector )
Hence, the input vector and the output productVector should be pointers to dynamically allocated
arrays. In particular, it should be assumed that productVector has been preallocated to the correct
size already.
(d) By setting a vector x = (4, −1, 3, 6)⊤, write a test program in q1d.cpp to compute and print to the
screen the product 𝐴x, where 𝐴 is the matrix given above.
[20 marks]
MATH**3
3 MATH**3
2. Suppose we wish to find x ∈ **7;𝑛
such that
𝐴x = b, (3)
where 𝐴 is an 𝑛 × 𝑛 matrix and b ∈ **7;𝑛
.
One algorithm for solving this problem is the (restarted) Generalised Minimal RESidual (GMRES) algorithm.
The method is too complicated to explain here, but works to quickly find approximations x𝑘 = x0 + y𝑘
where y𝑘 ∈ 𝒦𝑘 ∶= Span{𝐴q0
, 𝐴2q0 … 𝐴𝑘q0
} for 𝑘 = 1, 2, …. y𝑘 is chosen to minimise the residual
‖b − 𝐴x𝑘‖2
.
Here x0
is some initial guess vector and q0
is the normed initial residual
q0 =
b − 𝐴x0
‖b − 𝐴x0‖2
.
𝒦𝑘 is called a Krylov subspace of 𝐴.
The algorithm stops when ‖b − 𝐴x𝑘‖2 < tol for some termination tolerance tol. As the method becomes
very memory inefficient when 𝑘 is large, the method is restarted every so often and x𝑘 reset to be x0
.
An incomplete GMRES algorithm function PerformGMRESRestarted() has been written in
linear_algebra.cpp.
A key component of the GMRES algorithm is the Arnoldi iteration that seeks to find an orthonormal basis
of 𝒦𝑘. At the 𝑘th step of the iteration, the Arnoldi method constructs the following matrix decomposition
of 𝐴:
𝐴𝑄𝑘 = 𝑄𝑘+1𝐻̃
𝑘,
where the columns of 𝑄𝑘 (𝑄𝑘+1) contain the orthonormal basis of 𝒦𝑘 (𝒦𝑘+1, resp.) and 𝐻̃
𝑘 is a (𝑘+1)× 𝑘
upper Hessenberg matrix. That is, a matrix that is nearly upper triangular but has non-zero components
on the first subdiagonal.
The 𝑘th step of the Arnoldi algorithm is:
Algorithm 1 One step of the Arnoldi Iteration.
Require: 𝑘 > 0, 𝐴, 𝑄𝑘:
1: Let q𝑖 be the 𝑖th column of 𝑄𝑘.
2: Let h = {ℎ𝑖
}
𝑘+1
𝑖=1 be a vector of length 𝑘 + 1.
3: Compute q𝑘+1 = 𝐴q𝑘
4: for 𝑖 = 1, … , 𝑘 do
5: ℎ𝑖 = q𝑘+1 ⋅ q𝑖
.
6: q𝑘+1 = q𝑘+1 − ℎ𝑖q𝑖
.
7: end for
8: ℎ𝑘+1 = ‖q𝑘+1‖2
.
9: q𝑘+1 = q𝑘+1/ℎ𝑘.
10: 𝑄𝑘+1 = [𝑄𝑘, q𝑘+1].
11: return 𝑄𝑘+1 and h.
(a) In linear_algebra.cpp, write a C++ function which implements one step of the Arnoldi iteration
method defined above.
The function should have the following prototype
void PerformArnoldiIteration ( csr_matrix & matrix ,
dense_matrix & krylov_matrix , int k, double* hessenberg )
MATH**3 Turn Over
4 MATH**3
Here, matrix is 𝐴, k is the step of the iteration to perform, krylov_matrix is the matrix containing
the orthonormal basis, where each row is a basis vector. Upon entry, krylov_matrix should have 𝑘
rows and upon exit it should contain 𝑘 + 1 rows, with the new basis vector in the last row.
Finally, upon exit, hessenberg should contain h, which is the final column of 𝐻̃
𝑘. You may assume that
hessenberg has been preallocated to be of length 𝑘+1 before the call to PerformArnoldiIteration.
Your function should make use, where possible, of prewritten functions defined in dense_matrix.cpp
and vector.cpp. Your code should also make use of the matrix multiplication function from Q1.
Once you have written PerformArnoldiIteration() the GMRES function should function as intended.
Note: Storage of the basis functions in the rows of krylov_matrix, rather than in the columns,
improves efficiency of the code.
(b) In csr_matrix.cpp, write a C++ function that will read from a file a matrix already stored in CSR
format and a vector. You may assume the file structures are as in matrix1.dat and vector1.dat on
Moodle and you may use these data files to test your function.
(c) Write a test program in file q2c.cpp that will read in the matrix 𝐴 from matrix2.dat and the vector
x from vector2.dat, compute b = 𝐴x, then use PerformGMRESRestarted() with the default input
arguments to find an approximation x̂to x. At the end of the calculation, print to the screen the error
‖x − ̂ x‖2
.
[30 marks]
3. The file mesh.hpp contains a struct that defines a mesh data structure mesh for a general mesh comprising
axis-aligned rectangular cells. In particular, each cell in the mesh has an additional struct called
cell_information that contains, among other things, information about the cell neighbours. Familiarise
yourself with these data structures by looking in mesh.hpp.
mesh.cpp contains two functions that will generate meshes, they are:
• ConstructRectangularMesh() - this constructs a mesh on the rectangular domain 𝛺𝑅 = [𝑎, 𝑏] ×
[𝑐, 𝑑].
• ConstructLShapedMesh() - this constructs a mesh on the L-shaped domain 𝛺𝐿 = 𝛺𝑅\𝛺𝐶, where
𝛺𝐶 = [(𝑎 + 𝑏)/2, 𝑏] × [(𝑐 + 𝑑)/2, 𝑑].
(a) In finite_volume.cpp, write a C++ function that will create the storage for a matrix 𝐴 in CSR format
and a RHS vector F required for a cell-centred finite volume method for solving (1)-(2). You should
follow the procedure outlined in the Unit 6 lecture notes. As one of the inputs, your function should
take in a variable of type mesh.
(b) In csr_matrix.cpp, write a C++ function that will output to the screen a matrix stored in CSR format
in the same style as in matrix1.dat.
(c) In Q3c.cpp, write a program that will ask the user to supply the number of cells in each coordinate
direction of a rectangular mesh, sets up the mesh using ConstructRectangularMesh() then calls the
function from part (a) to set up the corresponding matrix and finally prints it to the screen using the
function from part (b).
[30 marks]
MATH**3
5 MATH**3
4. (a) In finite_volume.cpp, write a function that takes in a mesh, uses the function from Q3(a) to construct
𝐴 and F, then populates it with the correct entries to solve problem (1)-(2) using the cell-centred finite
volume method, as outlined in the Unit 6 notes. The function should also take as input the functions
𝑓(w**9;, 𝑦), b(w**9;, 𝑦) and the Dirichlet boundary function 𝑔(w**9;, 𝑦).
(b) In Q4b.cpp, write a main program to ask the user to select from the following problems and supply
the number of cells in each coordinate direction.
1. • Rectangular Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = 0.
2. • L-shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 8𝜋2
cos(2𝜋w**9;) cos(2𝜋𝑦);
• 𝑔(w**9;, 𝑦) = cos(2𝜋w**9;) cos(2𝜋𝑦);
• b = 0.
3. • Rectangular Mesh - 𝑎 = −1, 𝑏 = 1, 𝑐 = −1 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = (10, 10)⊤.
4. • L-Shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 0;

𝑔(w**9;, 𝑦) = {
1, w**9; = 0, 0.25 < 𝑦 < 0.75,
0, otherwise;
• b = (
50𝑦
√w**9;2+𝑦2
,
−50w**9;
√w**9;2+𝑦2
)

.
The code should then set up the linear system arising from the finite volume discretisation and solve
the system
𝐴uℎ = F
using PerformGMRESRestarted().
Finally, print to the screen the maximum value of uℎ.
Hint: Once you have computed uℎ you can output it to together with the mesh to a file using
OutputSolution() in mesh.cpp. plot_solution.py can then be used to plot the solution in Python.
Note, if you are unable to get the iterative solver from Q2 working, then you may create the finite volume
matrix 𝐴 as if it were a dense matrix (i.e store all the zero entries) and use the function
PerformGaussianElimination() from dense_matrix.cpp to solve the system of equations. This will incur
a small penalty. Note, an illustration of the use of PerformGaussianElimination() can be found in the
main program inside gaussian_elimination_test.cpp.
[20 marks]
MATH**3 End

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP9021代做、代寫Python程序語言
  • 下一篇:代寫CSE 30程序、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                一色桃子久久精品亚洲| 欧美亚洲国产一区二区三区| 国产午夜一区二区三区| 91麻豆免费观看| 天天av天天翘天天综合网色鬼国产 | 欧美另类久久久品| 成人av在线资源网站| 久久99热这里只有精品| 亚洲黄色小视频| 国产精品天美传媒沈樵| ww亚洲ww在线观看国产| 欧美日韩国产另类不卡| 99精品视频一区| 国产在线精品一区二区| 日本亚洲一区二区| 午夜精品一区在线观看| 亚洲影院在线观看| 亚洲自拍偷拍欧美| 久久综合色一综合色88| 91精品国产色综合久久不卡电影 | 麻豆精品国产91久久久久久| 亚洲一区二区在线免费观看视频 | 欧美一区二区三区四区高清| 在线日韩一区二区| 日本高清免费不卡视频| 欧美高清www午色夜在线视频| 99re8在线精品视频免费播放| 国产91丝袜在线播放九色| 国产乱淫av一区二区三区| 免费日韩伦理电影| 亚洲尤物在线视频观看| 中文字幕一区日韩精品欧美| 日本一二三四高清不卡| www国产亚洲精品久久麻豆| 欧美成人一区二区三区片免费 | 91免费视频观看| 国产aⅴ综合色| 盗摄精品av一区二区三区| 亚洲国产一二三| 国产精品久久夜| 亚洲天堂免费看| 亚洲www啪成人一区二区麻豆| 亚洲最新在线观看| 亚洲综合在线免费观看| 国产亚洲1区2区3区| 国产喂奶挤奶一区二区三区| 久久国产综合精品| 欧美xingq一区二区| 欧美mv日韩mv亚洲| 亚洲综合激情另类小说区| 日韩美女视频一区| 成人不卡免费av| 欧美性xxxxxxxx| 粉嫩av一区二区三区在线播放| 视频一区二区三区在线| 日韩午夜激情视频| 精品欧美乱码久久久久久 | 国产大陆a不卡| 日本不卡的三区四区五区| 欧美国产精品一区二区三区| 亚洲黄色小说网站| 久久午夜老司机| 亚洲免费三区一区二区| 日本不卡一区二区三区高清视频| 国产综合久久久久久鬼色| 不卡视频一二三| 欧美一区日本一区韩国一区| 久久久亚洲精品一区二区三区| 亚洲青青青在线视频| 久久精品国产77777蜜臀| 99热国产精品| 欧美色综合天天久久综合精品| 亚洲精品一区二区三区在线观看| 一区二区三区**美女毛片| 国产一区二区三区四 | 亚洲bt欧美bt精品777| 国产专区综合网| 北岛玲一区二区三区四区| 91精品国产91综合久久蜜臀| 久久先锋影音av鲁色资源| 亚洲乱码国产乱码精品精98午夜| 国产精品久久综合| 一区二区三区不卡视频在线观看| 亚洲视频一二区| 国产激情视频一区二区在线观看| 欧美人妇做爰xxxⅹ性高电影| 国产精品午夜免费| 久久成人18免费观看| 欧美日韩免费视频| 在线电影欧美成精品| 亚洲另类春色国产| xf在线a精品一区二区视频网站| 亚洲欧美另类图片小说| 成人少妇影院yyyy| 26uuu国产一区二区三区| 婷婷成人激情在线网| 人人超碰91尤物精品国产| 免费黄网站欧美| 宅男在线国产精品| 亚洲va韩国va欧美va精品| 国产激情精品久久久第一区二区 | 欧美精品一区二区三区久久久| 亚洲国产成人av网| 在线看一区二区| 欧美午夜精品理论片a级按摩| 中文字幕一区二区日韩精品绯色| 国产精品77777| 精品理论电影在线观看| 九九久久精品视频| 久久久午夜精品| 狠狠色丁香久久婷婷综| 337p亚洲精品色噜噜| 日本少妇一区二区| 制服丝袜日韩国产| 亚洲图片欧美激情| 国模一区二区三区白浆| 精品久久久三级丝袜| 国产成a人亚洲精| 欧美国产一区视频在线观看| 成人精品一区二区三区中文字幕| 中文字幕一区二区5566日韩| 91在线视频网址| 中文字幕综合网| 日本丰满少妇一区二区三区| 亚洲精品国产精品乱码不99| 中文字幕中文字幕在线一区| eeuss鲁一区二区三区| 毛片av一区二区| 日韩午夜激情av| 九九精品视频在线看| av一二三不卡影片| 91原创在线视频| 亚洲高清在线精品| 91精品视频网| 国产精品国产三级国产有无不卡| 九九热在线视频观看这里只有精品| 日韩欧美一区二区免费| 国产永久精品大片wwwapp| 国产婷婷色一区二区三区在线| 国产不卡视频在线播放| 亚洲一区二区三区小说| 在线成人免费视频| 成人伦理片在线| 亚洲成人免费看| 欧美精品1区2区| 欧美aaaaa成人免费观看视频| 亚洲成人免费观看| 欧美国产激情二区三区| 91视频免费播放| 经典三级在线一区| 自拍偷拍欧美精品| 欧美日韩一卡二卡| 国产精品一区二区无线| 亚洲综合图片区| 26uuu精品一区二区三区四区在线| 91麻豆自制传媒国产之光| 亚洲香肠在线观看| 国产免费久久精品| 91精品国产入口| 色婷婷激情久久| 国产成人一区二区精品非洲| 日韩欧美一级精品久久| 国产精品一区在线| 97se亚洲国产综合自在线观| 亚洲第一成人在线| 91在线高清观看| 蜜臀av国产精品久久久久| 91麻豆文化传媒在线观看| 国产精品中文字幕欧美| 欧美成人精品福利| 精品福利在线导航| 国产亚洲一本大道中文在线| 欧美精品123区| 国产精品国产精品国产专区不片| 国产免费观看久久| 一区二区三区在线观看网站| 日韩精品一区二区三区在线播放| 99久免费精品视频在线观看| 国产精品国产精品国产专区不片| 亚洲视频中文字幕| 国产亚洲欧美日韩日本| 久久99国内精品| 日韩精品成人一区二区三区| 中文字幕免费不卡| 欧美大片顶级少妇| 欧美精品自拍偷拍| 国产制服丝袜一区| 天使萌一区二区三区免费观看| 欧美日韩欧美一区二区| 麻豆精品视频在线观看| 久久久国产午夜精品| 成人黄页毛片网站| 亚洲成人综合网站| 色综合久久综合中文综合网| 国产精品久久久久桃色tv| 国产久卡久卡久卡久卡视频精品| 日本一区二区久久| 欧美喷水一区二区| 国产麻豆一精品一av一免费| 亚洲午夜激情网站|