99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP9021object-oriented Python  程序
代寫COMP9021object-oriented Python  程序

時間:2025-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment 2
COMP9021, Trimester 3, 2025
1 General matters
1.1 Aim
The purpose of the assignment is to:
• develop object-oriented Python programs with proper exception handling;
• parse and analyse combinatorial structures;
• generate TikZ/LaTeX diagrams programmatically;
• handle both small and complex structures efficiently.
1.2 Submission
Your program should be stored in a file named arches.py, optionally together with additional files. After
developing and testing your program, upload it via Ed (unless you worked directly in Ed). Assignments
can be submitted multiple times; only the last submission will be graded. Your assignment is due on
November 24 at 11:59am.
1.3 Assessment
The assignment is worth 13 marks and will be tested against multiple inputs. For each test, the au tomarking script allows your program to run for 30 seconds.
Assignments may be submitted up to 5 days after the deadline. The maximum mark decreases by 5% for
each full late day, up to a maximum of five days. For example, if students A and B submit assignments
originally worth 12 and 11 marks, respectively, two days late (i.e., more than 24 hours but no more than
48 hours late), the maximum mark obtainable is 11.7. Therefore, A receives min(11.7, 12) = 11.7 and B
receives min(11.7, 11) = 11.
Your program will generate a number of .tex files. These can be given as arguments to pdflatex to
produce PDF files. Only the .tex files will be used to assess your work, but generating the PDFs should
still give you a sense of satisfaction. The outputs of your programs must exactly match the expected
outputs. You are required to use the diff command to identity any differences between
the .tex files generated by your program and the provided reference .tex files. You are
responsible for any failed tests resulting from formatting discrepancies that diff would have
detected.
1.4 Reminder on plagiarism policy
You are encouraged to discuss strategies for solving the assignment with others; however, discussions
must focus on algorithms, not code. You must implement your solution independently. Submissions are
routinely scanned for similarities that arise from copying, modifying others’ work, or collaborating too
closely on a single implementation. Severe penalties apply.
1
2 Open Meanders
2.1 Background
An open meander is a combinatorial structure represented as a non-self-intersecting curve that crosses a
horizontal line of points, forming arches above and below the line. They can be described by permutations
with specific constraints.
Formally, let (a1, a2, . . . , an) be a permutation of {1,…, n} with n ≥ 2. Each integer corresponds to a
distinct point on a fixed horizontal line. The permutation defines a sequence of arches as follows:
• The first arch is an upper arch, drawn above the line.
• Subsequent arches alternate between upper and lower positions, forming a valid open meander.
• Each arch connects two consecutive points ai and ai+1 in the permutation. The orientation of each
arch depends on the relative order of these points:
– An arch is drawn from left to right if ai < ai+1.
– An arch is drawn from right to left if ai > ai+1.
• Arches on the same side do not intersect.
The collection of upper and lower arches can be represented symbolically using extended Dyck words—
one for each side of the line:
• ( corresponds to the left endpoint of an arch.
• ) corresponds to the right endpoint of an arch.
• 1 represents an end of the curve (a free endpoint) that lies on that side.
The position of the endpoints depends on the parity of n:
• For even n, both ends of the curve lie below the line.
• For odd n, one end lies above and the other below the line.
Each extended Dyck word therefore encodes the complete structure of the arches on its respective side,
though only together do the two sides represent the full open meander.
2.2 Examples
For a first example, consider the permutation (2, 3, 1, 4) and the corresponding generated diagram open_me anders_1.pdf.
• Upper arches extended Dyck word: (())
• Lower arches extended Dyck word: (1)1
For a second example, consider the permutation (1, 10, 9, 4, 3, 2, 5, 8, 7, 6) and the corresponding generated
diagram open_meanders_2.pdf.
2
• Upper arches extended Dyck word: (()((())))
• Lower arches extended Dyck word: 1(())1()()
For a third example, consider the permutation (5, 4, 3, 2, 6, 1, 7, 8, 13, 9, 10, 11, 12) and the corresponding
generated diagram open_meanders_3.pdf.
• Upper arches extended Dyck word: (()())()(()1)
• Lower arches extended Dyck word: ((()1))(()())
2.3 Requirements
Implement in arches.py a class OpenMeanderError(Exception) and a class OpenMeander.
Objects of type OpenMeander are created with OpenMeander(a_1, a_2, ..., a_n), where the arguments
form a permutation of {1,…, n} for some n ≥ 2. You may assume that all arguments are integers.
• If the arguments do not form a permutation of {1,…, n} for some n ≥ 2, raise
OpenMeanderError('Not a permutation of 1, ..., n for some n ≥ 2').
• If they do not define a valid open meander, raise
OpenMeanderError('Does not define an open meander').
Implement in OpenMeander three attributes:
• extended_dyck_word_for_upper_arches, a string representing the upper arches;
• extended_dyck_word_for_lower_arches, a string representing the lower arches;
• draw(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the open meander.
No error checking is required in the implementation of draw(filename, scale=1). You may assume that
filename is a valid string specifying a writable file name, and that scale is an integer or floating-point
number (typically chosen so that the resulting picture fits on a page).
An example interaction is shown in open_meanders.pdf.
Carefully study the three example .tex files. Note that the horizontal baseline extends one unit beyond
each end of the curve. Also note that the scale common to x and y, as well as the values for radius, are
displayed as floating-point numbers with a single digit after the decimal point. The length of the ends of
strings is computed as half of the scale of x and y, and is also displayed as a floating-point number with
a single digit after the decimal point.
3 Dyck Words and Arch Diagrams
3.1 Background
A Dyck word is a balanced string of parentheses representing a system of nested arches above a horizontal
line. The depth of an arch is the number of arches it is nested within, providing a way to analyse the
hierarchical structure.
3
For example, the Dyck word (()(()(()))) contains arches of depth 0, 1, 2, and 3. Dyck words can be
visualised as arches drawn above a horizontal line, with nesting reflected in the vertical stacking of arches.
Unlike open meanders, Dyck words involve only one side of arches (above the line) and do not include
endpoints represented by 1. They provide a simplified context for studying nesting depth and arch
diagrams, and arches can optionally be visually distinguished by color according to their depth.
When colouring is applied, the following sequence is used: Red, Orange, Goldenrod, Yellow, LimeGreen,
Green, Cyan, SkyBlue, Blue, Purple. If the maximum depth exceeds 9, the sequence wraps around. For
example, depth 10 would use Red again, depth 11 Orange, etc.
3.2 Examples
For a first example, consider the Dyck word (((((((((((((()))))))))))))) and the corresponding
generated diagrams, drawn_dyck_word_1.pdf and coloured_dyck_word_1.pdf.
• There is 1 arch of depth 0.
• There is 1 arch of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
• There is 1 arch of depth 4.
• There is 1 arch of depth 5.
• There is 1 arch of depth 6.
• There is 1 arch of depth 7.
• There is 1 arch of depth 8.
• There is 1 arch of depth 9.
• There is 1 arch of depth 10.
• There is 1 arch of depth 11.
• There is 1 arch of depth 12.
• There is 1 arch of depth 13.
For a second example, consider the Dyck word (()(()(()))) and the corresponding generated diagrams,
drawn_dyck_word_2.pdf and coloured_dyck_word_2.pdf.
• There are 3 arches of depth 0.
• There is 1 arch of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
For a third example, consider the Dyck word ((()())(()(()()))) and the corresponding generated
diagrams, drawn_dyck_word_3.pdf and coloured_dyck_word_3.pdf.
4
• There are 5 arches of depth 0.
• There are 2 arches of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
For a fourth example, consider the Dyck word ((()(()())(()(()(())))((()()))()(()()))) and the
corresponding generated diagrams, drawn_dyck_word_4.pdf and coloured_dyck_word_4.pdf.
• There are 11 arches of depth 0.
• There are 4 arches of depth 1.
• There are 2 arches of depth 2.
• There is 1 arch of depth 3.
• There is 1 arch of depth 4.
• There is 1 arch of depth 5.
3.3 Requirements
Implement in arches.py a class DyckWordError(Exception) and a class DyckWord.
Objects of type DyckWord are created with DyckWord(s), where the argument s is a nonempty string of
parentheses. You may assume that the argument is a string.
• If the argument is the empty string, raise
DyckWordError('Expression should not be empty').
• Otherwise, if the argument contains characters other than parentheses, raise
DyckWordError("Expression can only contain '(' and ')'").
• Otherwise, if the string is not balanced, raise
DyckWordError('Unbalanced parentheses in expression').
Implement in DyckWord three attributes:
• report_on_depths(), a method that outputs the number of arches at each depth, ordered from
smallest to largest depth;
• draw_arches(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the arches;
• colour_arches(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the
arches coloured according to their depth.
5
No error checking is required in the implementation of both methods. You may assume that filename
is a valid string specifying a writable file name, and that scale is an integer or floating-point number
(typically chosen so that the resulting picture fits on a page).
An example interaction is shown in dyck_words.pdf.
Carefully study the eight example .tex files (four for drawing arches, four for colouring arches). Note
that the horizontal baseline extends one unit beyond the leftmost and rightmost arches. Note that the
scale common to x and y is displayed as a floating-point number with a single digit after the decimal
point. Arches are drawn from the leftmost left end to the rightmost left end. Arches are coloured
from largest depth to smallest depth, and for arches of the same depth, from leftmost left end to
rightmost left end.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP3020J encryptors and decryptors 程序&#160;
  • 下一篇:代寫comp3211程序代做 &#160;IoT Framework&#160;
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品白丝在线| 色综合久久久网| 丁香婷婷综合色啪| 日韩欧美你懂的| 中文字幕 久热精品 视频在线| 日本中文字幕一区| 欧美精品vⅰdeose4hd| 亚洲老司机在线| 91亚洲国产成人精品一区二区三| 国产精品久久久久影院色老大 | 国产精品进线69影院| 成人污污视频在线观看| 久久久青草青青国产亚洲免观| 韩国精品一区二区| 亚洲国产精华液网站w| 国产不卡高清在线观看视频| 国产欧美一二三区| av一区二区久久| 亚洲欧美色图小说| 欧美日韩国产另类不卡| 美女在线视频一区| 国产精品久久久久久一区二区三区 | 亚洲精品在线观看网站| 国内偷窥港台综合视频在线播放| 久久婷婷成人综合色| 成人激情免费视频| 亚洲一卡二卡三卡四卡五卡| 丁香六月综合激情| 亚洲激情图片qvod| 精品国产乱码久久久久久久| k8久久久一区二区三区| 日韩精品国产精品| 中文字幕久久午夜不卡| 欧美在线你懂的| 免费成人小视频| 国产精品久久久久一区| 8x8x8国产精品| 国产伦精品一区二区三区在线观看 | 日韩一区二区三区观看| 国产精品羞羞答答xxdd| 亚洲精品videosex极品| 精品久久久三级丝袜| 91丨九色porny丨蝌蚪| 奇米色一区二区| 亚洲日本中文字幕区| 日韩欧美成人一区二区| 99在线热播精品免费| 捆绑紧缚一区二区三区视频| 中文字幕在线不卡一区 | 色综合久久久久综合体| 国内成人自拍视频| 五月天视频一区| 18欧美亚洲精品| 欧美久久久久久蜜桃| 国产成人精品在线看| 日韩成人精品视频| 亚洲精品第一国产综合野| 久久尤物电影视频在线观看| 欧美色图片你懂的| 成人av免费在线观看| 国产一区二区三区不卡在线观看| 日韩av中文在线观看| 亚洲久本草在线中文字幕| 国产日韩高清在线| 国产日本欧洲亚洲| 久久免费视频一区| 久久日韩粉嫩一区二区三区| 91精品国产色综合久久| 风流少妇一区二区| 国产成人亚洲综合a∨婷婷图片 | 欧美区在线观看| 欧美丝袜第三区| 色哦色哦哦色天天综合| 成人中文字幕合集| yourporn久久国产精品| 国产精品一区二区果冻传媒| 国产精品中文有码| 成人激情图片网| av高清久久久| 91理论电影在线观看| 国产伦精品一区二区三区在线观看| 奇米色一区二区三区四区| 人人精品人人爱| 国产精品综合视频| 成人午夜在线免费| 91亚洲资源网| 欧美色图12p| 日韩精品一区二区三区视频| 欧美久久久久久久久中文字幕| 精品一区二区三区视频在线观看 | 中文av一区二区| 国产精品久久久久aaaa樱花| 欧美一二三四区在线| 91精品国产综合久久精品麻豆| 欧美久久婷婷综合色| 精品免费日韩av| 国产精品理论片| 亚洲免费视频中文字幕| 无码av免费一区二区三区试看| 奇米精品一区二区三区四区| 亚洲第一搞黄网站| 精品一区二区三区在线观看 | 日韩中文字幕av电影| 亚洲欧美成aⅴ人在线观看| 一区二区在线观看av| 视频一区视频二区中文字幕| 九一久久久久久| 99久久国产免费看| 99re视频这里只有精品| 欧美精品丝袜久久久中文字幕| 久久综合久色欧美综合狠狠| 亚洲人成网站在线| 精品一区二区三区免费观看 | 国产麻豆精品视频| 在线看日韩精品电影| 久久综合色8888| 亚洲午夜久久久久久久久电影网 | 欧美日韩国产片| 国产欧美一区二区精品婷婷| 天堂久久一区二区三区| av在线免费不卡| 久久伊99综合婷婷久久伊| 亚洲综合自拍偷拍| 国产成人综合视频| 欧美综合久久久| 国产精品夫妻自拍| 国产精品伊人色| 日韩欧美中文字幕一区| 亚洲影院在线观看| 国产精品乱码人人做人人爱| 国产精品12区| 成人欧美一区二区三区小说| 欧美综合一区二区| 亚洲一区二区美女| 日韩一区二区三免费高清| 久久爱www久久做| 国产欧美日韩亚州综合| 一本色道久久加勒比精品| 亚洲大尺度视频在线观看| 欧美一区二区三区四区在线观看| 久久国产夜色精品鲁鲁99| 国产欧美综合在线观看第十页| av在线播放不卡| 天天做天天摸天天爽国产一区| 欧美一区二区视频免费观看| 激情久久久久久久久久久久久久久久| 欧美经典三级视频一区二区三区| 成人在线视频首页| 亚洲成av人片一区二区梦乃| 久久综合国产精品| 在线观看亚洲专区| 国产原创一区二区| 亚洲自拍都市欧美小说| 26uuuu精品一区二区| 99国产精品一区| 精品综合免费视频观看| 日韩理论片在线| 欧美va亚洲va在线观看蝴蝶网| 99久精品国产| 蜜臀精品一区二区三区在线观看 | 亚洲电影第三页| 国产香蕉久久精品综合网| 欧美日韩在线播放三区| 成人激情校园春色| 日韩福利视频网| 国产精品网站在线观看| 91精品国产免费久久综合| 成人黄色a**站在线观看| 免费不卡在线视频| 一区二区三区av电影| 国产日韩欧美麻豆| 日韩免费高清av| 欧美肥妇毛茸茸| 在线一区二区三区四区五区| 成人精品国产福利| 精品影视av免费| 石原莉奈在线亚洲二区| 亚洲精品国产a| 日韩毛片在线免费观看| 久久精品在线免费观看| 日韩欧美中文一区二区| 欧美久久久久免费| 欧美天堂一区二区三区| 一道本成人在线| 91亚洲国产成人精品一区二区三| 国产一区二区调教| 国产在线麻豆精品观看| 精油按摩中文字幕久久| 久久狠狠亚洲综合| 美女爽到高潮91| 麻豆久久久久久久| 青青草原综合久久大伊人精品| 亚洲一区在线观看网站| 樱桃视频在线观看一区| 中文字幕在线不卡| 国产精品无遮挡| 亚洲欧美一区二区三区国产精品 | 日韩精品一级二级| 美女一区二区视频| 紧缚捆绑精品一区二区|