99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

ECE371編程代做、代寫Python程序設計
ECE371編程代做、代寫Python程序設計

時間:2025-05-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CPT206代做、代寫Java編程語言
  • 下一篇:CSC1002代寫、代做Python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品欧美经典| 精品国产一区二区三区不卡| av亚洲精华国产精华| 91在线观看污| 久久精品国产一区二区| 亚洲第一福利视频在线| ...xxx性欧美| 久久综合九色综合97_久久久| 欧美一级一区二区| 制服.丝袜.亚洲.中文.综合| 欧美三级在线视频| 91精品综合久久久久久| 精品久久久久久久久久久久包黑料 | 在线视频你懂得一区| 午夜影院久久久| 中文字幕亚洲欧美在线不卡| 国产精品久久久久久久久晋中 | 国产亚洲制服色| 日本一区二区三级电影在线观看| 中文字幕av不卡| 亚洲免费观看高清完整| 亚洲精选免费视频| 免费一级欧美片在线观看| 久久国产精品第一页| 成人国产一区二区三区精品| 91首页免费视频| 欧美日韩高清一区二区不卡| 91精品国产综合久久婷婷香蕉| 日韩欧美国产电影| 国产精品不卡视频| 亚洲午夜精品17c| 九九**精品视频免费播放| 国产成a人亚洲精品| 一本一道综合狠狠老| 91精品婷婷国产综合久久竹菊| 久久精品一区四区| 久久无码av三级| 日本一区二区视频在线观看| 久久久久久**毛片大全| 国产精品免费观看视频| 亚洲男人电影天堂| 日韩黄色一级片| 国产在线播放一区二区三区| 色婷婷av一区二区三区软件| 538prom精品视频线放| 国产日韩精品视频一区| 亚洲欧美国产77777| 婷婷中文字幕一区三区| 国产午夜精品美女毛片视频| 欧美激情中文字幕一区二区| 亚洲国产日韩综合久久精品| 国模套图日韩精品一区二区| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 成人高清在线视频| 爽好多水快深点欧美视频| 自拍偷拍国产精品| 国产精品人妖ts系列视频| 成人av资源下载| 日本成人在线看| 欧美一区二区三区啪啪| 欧美日韩国产免费| 欧美精品粉嫩高潮一区二区| 91精品国产综合久久精品app| 欧美嫩在线观看| 欧美一级xxx| 久久综合久久综合九色| 亚洲国产高清aⅴ视频| 亚洲精品国产高清久久伦理二区| 亚洲chinese男男1069| 美女视频黄a大片欧美| 国产风韵犹存在线视精品| 色吧成人激情小说| 日韩午夜电影在线观看| 中文字幕+乱码+中文字幕一区| 亚洲精品欧美激情| 久久精品国内一区二区三区| 99久久综合99久久综合网站| 欧美在线色视频| 国产日产欧美一区二区视频| 亚洲综合小说图片| 国产一区二区三区在线观看免费 | 黄页视频在线91| 国产成人精品一区二| 欧美性一级生活| 久久久噜噜噜久噜久久综合| 亚洲欧美激情小说另类| 免费在线观看一区| 91影院在线观看| 精品国产污污免费网站入口 | av在线播放成人| 欧美一区二区播放| 亚洲免费伊人电影| 精品亚洲免费视频| 欧美性高清videossexo| 国产精品色在线| 紧缚捆绑精品一区二区| 欧美日本一道本在线视频| 国产精品三级视频| 国产精一区二区三区| 欧美一区二区三区精品| 亚洲人成精品久久久久久| 国产电影精品久久禁18| 欧美成人性战久久| 日韩黄色片在线观看| 色999日韩国产欧美一区二区| xfplay精品久久| 秋霞电影网一区二区| 91在线国产观看| 欧美mv日韩mv亚洲| 日韩国产高清影视| 欧美少妇bbb| 亚洲国产精品久久不卡毛片| 一本在线高清不卡dvd| 国产精品伦理在线| 成人免费精品视频| 久久精品一区二区三区不卡牛牛| 蜜桃一区二区三区在线观看| 在线观看91精品国产麻豆| 亚洲成人动漫av| 欧美老肥妇做.爰bbww视频| 午夜久久久影院| 91麻豆精品国产自产在线观看一区 | 色婷婷av一区二区三区gif| 中文文精品字幕一区二区| 国产成人免费视频精品含羞草妖精| 日韩欧美一区二区在线视频| 免费观看日韩电影| 精品国产一区二区三区av性色| 精品一区二区免费视频| 久久久久久夜精品精品免费| 国产suv精品一区二区三区| 中文字幕第一页久久| www.亚洲精品| 亚洲午夜精品网| 91精品国产综合久久香蕉麻豆| 久久精品国内一区二区三区| 久久奇米777| 91丨porny丨国产入口| 亚洲高清在线视频| 日韩亚洲欧美在线观看| 国产东北露脸精品视频| 综合av第一页| 这里只有精品视频在线观看| 久久成人久久鬼色| 国产亚洲精品久| 欧洲生活片亚洲生活在线观看| 香蕉影视欧美成人| 久久日一线二线三线suv| 不卡一卡二卡三乱码免费网站| 一区二区三区毛片| 日韩免费高清视频| www.欧美日韩国产在线| 日日夜夜免费精品视频| 国产农村妇女毛片精品久久麻豆 | 99久免费精品视频在线观看| 五月天网站亚洲| 久久精品男人的天堂| 欧美又粗又大又爽| 国产精品自拍av| 亚洲一区二区三区在线播放| 日韩欧美中文一区| 在线一区二区三区做爰视频网站| 蜜桃精品视频在线| 一区二区视频在线看| 精品国产乱码久久久久久浪潮| 色综合久久久久综合99| 精品sm在线观看| 综合分类小说区另类春色亚洲小说欧美| 国内精品视频一区二区三区八戒| 国产婷婷色一区二区三区四区| 色视频成人在线观看免| 精品一区二区三区在线播放| 尤物av一区二区| 国产日韩在线不卡| 欧美一区二区三区性视频| 99精品桃花视频在线观看| 日本成人在线网站| 亚洲激情图片qvod| 欧美性生活久久| 亚洲韩国一区二区三区| 久久久久久9999| 欧美一区二区免费| 91福利在线观看| 成人短视频下载| 国产美女娇喘av呻吟久久| 日韩精品久久理论片| 亚洲一区二区五区| 亚洲欧洲成人自拍| 国产亚洲制服色| 久久夜色精品一区| 欧美一区二区福利视频| 欧美午夜一区二区| 欧美性色aⅴ视频一区日韩精品| 99re6这里只有精品视频在线观看| 国产成人免费视频网站| 国产在线精品一区二区不卡了| 日韩va欧美va亚洲va久久| 亚洲国产成人av| 日韩极品在线观看| 裸体一区二区三区|