99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

ECE371編程代做、代寫Python程序設計
ECE371編程代做、代寫Python程序設計

時間:2025-05-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CPT206代做、代寫Java編程語言
  • 下一篇:CSC1002代寫、代做Python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          免费成人av| 精品福利免费观看| 国产综合色产| 欧美有码视频| a91a精品视频在线观看| 美国成人毛片| 亚洲黄色在线观看| 欧美成人官网二区| 亚洲麻豆一区| 欧美日韩亚洲一区二区三区四区| 欧美不卡在线| 久久久综合视频| 国产精品男人爽免费视频1| 最新成人在线| 欧美日韩18| 亚洲精品中文字| 欧美人成在线| 欧美jjzz| 午夜精品影院| 亚洲国产成人一区| 欧美色中文字幕| 午夜精品久久久久久99热| 欧美性片在线观看| 久久成人免费视频| 亚洲精品视频在线播放| 136国产福利精品导航| 欧美女激情福利| 亚洲一区尤物| 国产亚洲一区在线| 亚洲精品黄色| 欧美一区二区三区四区高清| 国产精品―色哟哟| 久久躁日日躁aaaaxxxx| 亚洲激情小视频| 亚洲人成网在线播放| 国产精品乱码人人做人人爱| 久久福利一区| 中文日韩在线视频| 在线观看亚洲| 国产伦精品一区二区三区在线观看| 久久免费少妇高潮久久精品99| 夜夜嗨网站十八久久| 国产日韩欧美日韩| 欧美午夜片在线观看| 久久久久久久97| 亚洲午夜在线观看| 亚洲国产99| 久久久精品一品道一区| 91久久久久久| 欧美日韩美女| 久久理论片午夜琪琪电影网| 亚洲精品综合| 亚洲在线免费观看| 最新成人在线| 亚洲一区日韩| 9i看片成人免费高清| 亚洲午夜精品国产| 99国产精品自拍| 亚洲日本激情| 亚洲欧美综合国产精品一区| 99在线视频精品| 欧美亚洲日本国产| 亚洲免费在线| 亚洲无线一线二线三线区别av| 亚洲另类在线视频| 久久成人免费网| 久久精品日韩欧美| 中文在线一区| 一级日韩一区在线观看| 亚洲国产精品尤物yw在线观看| 欧美日韩一区二区三区| 欧美高清在线一区| 模特精品裸拍一区| 久久久久国色av免费观看性色| 先锋影音久久久| 欧美交受高潮1| 欧美日韩在线免费观看| 黄色日韩网站| 亚洲精品久久在线| 久久精品在线播放| 欧美.com| 国外成人在线视频| 亚洲福利视频三区| 欧美一级视频精品观看| 欧美日韩一区成人| 亚洲人成艺术| 亚洲欧美成人一区二区在线电影| 宅男精品导航| 欧美一区二区三区四区高清 | 国产精品porn| 亚洲国产一区二区精品专区| 欧美在线视频一区二区| 国产精品久久久久久久电影| 欧美日韩综合一区| 亚洲精品日韩在线| 亚洲免费视频网站| 欧美午夜激情小视频| 欧美日韩视频在线一区二区观看视频 | 亚洲午夜羞羞片| 欧美另类videos死尸| 国产精品欧美经典| 在线视频国内自拍亚洲视频| 亚洲精品久久久久久久久久久| 99re6热在线精品视频播放速度| 欧美视频不卡| 国产精品尤物| 国产精品天天摸av网| 国产一区二区中文| 最新国产成人av网站网址麻豆| 久久久久久久综合| 在线视频国产日韩| 欧美高清在线一区| 国产欧美日韩一区二区三区| 亚洲国产成人久久综合一区| 久久中文精品| 亚洲伦理一区| 欧美成人精品| 99re6热在线精品视频播放速度| 欧美日韩在线播放一区| 亚洲国产成人精品视频| 欧美精品v日韩精品v韩国精品v| 一本色道久久| 欧美14一18处毛片| 99在线精品视频| 国产精品一区二区在线观看网站 | 亚洲高清久久久| 欧美日本不卡高清| 欧美主播一区二区三区| 91久久综合亚洲鲁鲁五月天| 国产精品高潮视频| 艳女tv在线观看国产一区| 国产日韩欧美高清免费| 快播亚洲色图| 亚洲国产成人tv| 国产精品白丝av嫩草影院 | 国产情侣久久| 欧美亚洲综合久久| 亚洲乱码国产乱码精品精98午夜| 国产精品视频久久| 欧美精品97| 久久中文在线| 亚洲黄网站在线观看| 国产精品最新自拍| 欧美精品成人91久久久久久久| 亚洲精品女人| 激情伊人五月天久久综合| 欧美一级理论性理论a| 亚洲精品视频中文字幕| 国产欧美一区在线| 国产精品免费观看视频| 欧美剧在线观看| 久久综合激情| 久久婷婷国产综合精品青草| 亚洲一级片在线观看| 亚洲精品综合精品自拍| 亚洲国产成人av| 在线看一区二区| 欧美日韩视频一区二区| 久久资源av| 亚洲精品欧美| 亚洲激情在线激情| 亚洲国产精品视频| 亚洲国产天堂久久综合| 激情伊人五月天久久综合| 黄色小说综合网站| 黄色亚洲网站| 亚洲第一福利在线观看| 在线日韩中文| 亚洲韩国青草视频| 亚洲国产欧美一区二区三区久久| 国产一区二区主播在线| 欧美精品www在线观看| 欧美紧缚bdsm在线视频| 欧美日韩性生活视频| 欧美午夜精品一区| 国产精品亚洲一区二区三区在线| 国产麻豆精品视频| 国产日韩欧美一区二区| 欧美日韩一区二区三| 国产精品久久久久久福利一牛影视| 久久精品国产亚洲一区二区| 久久久av毛片精品| 欧美va天堂在线| 欧美日韩在线观看一区二区三区| 国产精品国产三级国产普通话99| 欧美三区在线观看| 国产亚洲精品aa午夜观看| 欧美日韩激情小视频| 久久亚洲不卡| 欧美高清视频一二三区| 久久av资源网站| 老司机成人在线视频| 欧美激情女人20p| 国产精品一区二区男女羞羞无遮挡| 国产综合亚洲精品一区二| 亚洲精品视频在线看| 亚洲在线国产日韩欧美| 女同性一区二区三区人了人一| 欧美人在线观看| 国产一区视频观看|