合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        AM11編程代做、代寫Python編程語言
        AM11編程代做、代寫Python編程語言

        時(shí)間:2025-04-10  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Individual Assignment AM11
        1. Project Selection: Choose a problem where you will use at least one out of the 5 
        topics that you have learnt to help solve a problem of your choice (CNN, SVM, Text Mining, 
        PCA, Recommendation Systems). 
        Þ The project should have a well-defined goal, such as classification, clustering, 
        recommendation etc.
        Þ Plagiarism will result in 0 marks (e.g. replication of an existing Kaggle notebook). 
        Your work must be original and well documented to explain your workings.
        Þ The complexity of your project should match the time available for submission.
        Þ The complexity of your work will reflect your grade (e.g. if you decide to work with a 
        dataset that requires PCA pre-processing before classifying with SVM, thus utilising 
        two out of five algorithms that you have learnt).
        2. Dataset: Use an open dataset (e.g., from Kaggle, UCI ML Repository, etc.) or collect 
        your own, ensuring it has enough samples but that it is not too large (you should be able to 
        run your analysis on your laptop). For classification problems, ensure to properly balance 
        your classes. 
        3. Methodology:
        • Explain why the chosen technique is suitable for the problem.
        • Preprocess the data appropriately.
        • Train and evaluate the model using appropriate performance metrics.
        • Compare with at least one baseline model
        4. Implementation (.py or .ipynb):
        • Use Python (with libraries like TensorFlow, Scikit-learn, Pandas, etc.).
        • Ensure reproducibility (seed the random number generator where 
        appropriate, provide a Jupyter Notebook (and its knitted output) or a well-documented .py 
        script).
        5. Report (pdf):
        • Introduction: Explain the problem and dataset. Ensure to supply references. If 
        you can produce your how to use TeX Studio and LaTeX.
        • Methodology: Describe preprocessing, model selection, and training.
        • Results & Discussion: Present evaluation metrics, visualizations, and insights.
        • Conclusion: Summarize the findings and suggest future improvements.
        Your report should be a maximum of 3 pages long, in an Arial 11 font with standard margins.
        Demonstrate the art of concise writing (brevity, economy of words, clarity and precision). 
        Ensure your figure axes labelling and tickers are legible.
        6. Grading Criteria:
        You will be evaluated on both the technical execution and on your ability to communicate 
        your findings. 
        Category Weight Description
        Problem clarity & justification 20% Clearly defines the problem, explains its 
        relevance, and justifies the chosen ML 
        technique.
        Data preprocessing & exploratory 
        analysis
        20% Properly cleans, preprocesses, and 
        visualizes the data; identifies key patterns 
        and challenges.
        Model selection, training, and 
        evaluation
        30% Implements an appropriate model, explains 
        parameter choices, evaluates performance 
        with meaningful metrics, and compares with 
        a baseline.
        Interpretation & discussion of 
        results
        20% Provides insightful analysis, interprets 
        results, discusses limitations, and suggests 
        improvements.
        Code quality & reproducibility 10% Code is well-documented, structured, and 
        reproducible; submission includes a Jupyter 
        Notebook or well-commented script.

        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:代寫MEC 302、代做python編程設(shè)計(jì)
      2. 下一篇:莆田衣服十大良心微商推薦,莆田十大良心微商排行榜合集!
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 国产精品一区二区三区高清在线| 色窝窝无码一区二区三区 | 奇米精品视频一区二区三区| 久久精品国产AV一区二区三区| 久久精品中文字幕一区| 麻豆AV天堂一区二区香蕉| AV天堂午夜精品一区| 高清精品一区二区三区一区| 国产福利视频一区二区| 国产精品视频一区二区三区不卡 | 国产成人久久一区二区不卡三区 | 亚洲中文字幕久久久一区| 精品久久一区二区| 内射女校花一区二区三区| 无码精品人妻一区二区三区AV| 国产怡春院无码一区二区 | 亚洲国产综合无码一区| 中文字幕一区二区区免| 亚洲视频在线一区二区| 狠狠爱无码一区二区三区| 国产一区二区在线观看麻豆| 无码中文人妻在线一区| 国产精品视频一区麻豆| 亚洲精品伦理熟女国产一区二区 | 国产精品亚洲专区一区| 日本福利一区二区| 国产成人综合亚洲一区| 日韩精品无码久久一区二区三| 在线观看一区二区三区视频| 国产伦精品一区二区三区视频小说| 无码日本电影一区二区网站| 国产品无码一区二区三区在线| 无码日韩精品一区二区免费| 国产嫖妓一区二区三区无码| 精品视频一区二区| 中文字幕一区在线| 亚洲一区二区三区免费在线观看| 无码国产精品一区二区免费虚拟VR| 亚洲国产欧美国产综合一区| 国产精品一区二区三区高清在线| 国产免费播放一区二区|