合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做MATH2110、Java/Python程序語言代寫
        代做MATH2110、Java/Python程序語言代寫

        時間:2025-04-05  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        1 MATH2110
        The University of Nottingham
        SCHOOL OF MATHEMATICAL SCIENCES
        SPRING SEMESTER 2025
        MATH2110 - STATISTICS 3
        Coursework 2
        Deadline: 3pm, Friday 2/5/2025
        Your neat, clearly-legible solutions should be submitted electronically as a pdf file via the MATH2110 Moodle
        page by the deadline indicated there. As this work is assessed, your submission must be entirely your own
        work (see the University’s policy on Academic Misconduct).
        Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark per working
        day.
        Deadline extensions due to Support Plans and Extenuating Circumstances can be requested according to
        School and University policies, as applicable to this module. Because of these policies, solutions (where
        appropriate) and feedback cannot normally be released earlier than 10 working days after the main cohort
        submission deadline.
        The page limit is 8 pages and the minimum font size is 11.
        THE DATA
        As a medical statistician of the 19th century, your task is to assess associations between the fertility of different
        Swiss regions and certain social parameters. The goal is to identify the most influential variables, select the
        best model, and make predictions using it. You have data for 47 regions with the following variables:
        • Fertility, standardised fertility measure.
        • Agriculture, percentage of males involved in agriculture as occupation
        • Examination, percentage draftees receiving highest mark on army examination
        • Education, percentage education beyond primary school for draftees.
        • Catholic, percentage of catholic.
        • Infant.Mortality, normalised proportion of live births who live less than 1 year.
        You can load the data by running the 𝑅 command data(swiss). The only packages that may be used are
        “BayesFactor” and “MASS”.
        MATH2110 Turn Over
        2 MATH2110
        THE TASKS
        First divide the data into a training set (70% - 33 observations) and a test set (30% - 14 observations). All the
        fitting and selection should be done using exclusively the train set. To avoid having correlations during the
        train/test division, use the function sample() to randomly choose both groups.
        All modelling should be using Bayesian Normal linear models and use priors:
        𝛽|𝜎2 ∼ 𝑁 (0, 100Ip
        )
        𝜎
        2 ∼ 𝐼𝐺(2, 2),
        where Ip
        is the 𝑝 × 𝑝 identity matrix and 𝐼𝐺 denotes the inverse-gamma distribution.
        1. Consider the relationship between Examination and Fertility.
        • Perform an exploratory analysis of the relationship between Examination and Fertility.
        • Fit a Bayesian Normal linear model with Fertility as the dependent variable and Examination as the
        independent variable.
        • Write down the selected model posterior.
        • Sample 10 sets of parameters from the posterior distribution and plot the resulting linear model for
        each set of sampled parameters.
        [20 marks]
        2. Consider the relationship between Catholic and Fertility.
        • Perform an exploratory analysis of the relationship between Catholic and Fertility.
        • Create a new variable Catholic.Transform = (Catholic − 𝛼)2
        for a suitable choice of 0 ≤ 𝛼 ≤ 100.
        • Fit a Bayesian Normal linear model with Fertility as the dependent variable and Catholic.Transform
        as the independent variable.
        • Write down the selected model posterior.
        • Using the posterior mean for the parameters of the linear model consider the model fit.
        [25 marks]
        3. Use Bayes Factors to determine which of the models in 1 and 2 best fits the data. [5 marks]
        4. Consider general linear models for modelling Fertility as a function of the covariates.
        • Perform model selection to choose a model and justify your choice of model.
        • Write down the selected model posterior.
        • Draw samples from the corresponding posterior.
        • Present histograms (using function hist()) for the samples of each parameter.
        • Compute estimates of the parameters and compare them.
        • Make predictions for the Fertility values in the test set.
        • Compare these with the real values.
        [50 marks]
        MATH2110 End

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:天天花卡客服電話-天天花卡24小時客服熱線電話
      2. 下一篇:代寫HIM3002、代做Python編程語言
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 红杏亚洲影院一区二区三区| 波多野结衣电影区一区二区三区| 久久福利一区二区| 国产精品自拍一区| 国产精品免费综合一区视频| 免费av一区二区三区| 麻豆国产在线不卡一区二区| 亚洲一区二区三区偷拍女厕| 国产伦精品一区二区三区精品| 在线观看午夜亚洲一区| 日韩精品一区二区午夜成人版 | 日韩一区二区视频| 精品欧洲av无码一区二区三区| 日本精品高清一区二区| 日本一区二区三区不卡视频中文字幕| 射精专区一区二区朝鲜| 午夜肉伦伦影院久久精品免费看国产一区二区三区 | 国产一区二区三区免费视频 | 国产精品成人99一区无码| 成人免费视频一区| 国产伦精品一区二区三区无广告 | 亲子乱av一区二区三区| 国产成人一区在线不卡| 午夜无码一区二区三区在线观看 | 2014AV天堂无码一区| 亚洲一区二区三区香蕉| 无码毛片视频一区二区本码| 亚洲一区二区影院| 成人免费视频一区| 在线观看午夜亚洲一区| 精品国产一区二区三区AV | 精品一区二区三区免费视频| 日本高清不卡一区| 精品一区二区三区影院在线午夜 | 红桃AV一区二区三区在线无码AV| 成人区人妻精品一区二区不卡网站 | 无码精品人妻一区二区三区AV| 日本精品视频一区二区三区| 中文字幕一区二区三区视频在线| 日韩精品无码一区二区中文字幕| 日本免费一区二区三区最新|