合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        PALS0039代做、代寫Java/C++語言程序
        PALS0039代做、代寫Java/C++語言程序

        時間:2025-03-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        PALS0039 Introduction to Deep Learning for Speech and Language Processing 
        Year: 2024-2025 Assessment: Coursework 
        Period: Central Assessment Weighting: 80% 
        Level: UG6, UG7 and PG7 Word count: 2500 words maximum (2000 text + 500 
        code)
        Component: 001 Deadline: Monday, 28 April 2025
        Please ensure you read and follow the Coursework Submission and Penalties page 
        AI usage: You are allowed to use AI to assist with generating code. You are not allowed to 
        use AI for any other purpose. Whether you use AI to assist with generating code or not, you 
        need to demonstrate that you understand the code, no marks will be given for code that is 
        not explained in your own words.
        Coursework Description 
        Make sure you read the whole description, including the marking criteria
        Autocompletion:
        Humans can complete words, sentences (and even sounds) when parts were lost or were 
        masked by noise. Likewise, text-editing programmes can make suggestions for the text that 
        follows. This is what you will be doing in this task:
        Use deep learning to build a model that predicts the next three characters (e.g., “Merry 
        Christ…” -> “mas”). Evaluate the training and performance of the model. Present the code in 
        a manner that makes it easy to use for others. In your discussion, comment on why you 
        chose your model and parameters. A good discussion presents further architectures and 
        why you did not choose them. If the model does not perform well, explain what would be 
        needed to improve it. Marking (see below) will be based on the design, implementation and 
        evaluation of the deep learning approach, not necessarily on the accuracy achieved.
        For your database, you can choose or combine from any of the ebooks that are uploaded to 
        Moodle in the assignment section. Your model must not have used any other data. It is your 
        task to create appropriate training and test sets from the data provided.
        Submission requirements
        • You should implement a working deep learning application as a Jupyter or Google 
        Colab Notebook. 
        • The notebook should contain text and code. The text should provide all the
        necessary background, references, method, results analysis and discussion to explain 
        the task as you might put in a lab report. The code should at a minimum 
        demonstrate loading and processing of data, building a deep learning model and 
        evaluation of its performance. 
        • The solution should be original – that is, you should motivate your own design 
        decisions, not simply follow advice found on the web.
        • No marks will be given on code alone. You need to demonstrate your understanding 
        of the code and your choices.
        • It is not necessary to obtain state of the art performance on the task. The goal is to 
        show that you know how to design, implement and run a deep learning task in 
        speech or language. 
        • For submission, you should run the notebook so that all text, code and outputs are 
        visible, then save the whole as a PDF file for submission. The pdf file will be marked. 
        The notebook itself should be submitted as an appendix or be linked and available 
        during the marking period.
        • The use of tables and figures is encouraged, and contributes to a good presentation 
        of the results.
        • The overall length of the text in the notebook (excluding code, comments in the 
        code, outputs and bibliography) should be around 1500 words and must not exceed
        2000 words. Penalties will apply from 2001 words.
        • You should use comments in the code to adhere with good coding practice. The code 
        and in-code comments count as a nominal 500 words but you may exceed this 
        without penalty (though see point 4 of marking criteria, conciseness of 
        presentation).
        Marking Criteria
        1. Coding of the implementation, including in-code comments, description of the code 
        and demonstration of knowledge about deep learning models (50%) 
        2. Presentation of the results (20%) 
        3. Discussion of outcomes and conclusions of study (20%) 
        4. Use of Jupyter/Colab notebook and conciseness of presentation (10%) 
        Note that there are differences in the standard marking scheme used for level 6 and level 7 
        submissions.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:代做COMP2221、代寫Java程序設計
      2. 下一篇:小花分期全國客服電話-小花分期24小時人工服務熱線
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 国产精品一区二区资源| 精品国产精品久久一区免费式| 国产大秀视频在线一区二区| 精品国产日韩一区三区| 日本不卡一区二区三区视频| 日本精品一区二区三区在线视频| 日本在线视频一区二区| 国产成人精品无码一区二区三区| 立川理惠在线播放一区| 怡红院一区二区三区| 日韩免费无码视频一区二区三区 | 国产色综合一区二区三区| 国产精品伦子一区二区三区| 成人在线观看一区| 人妻精品无码一区二区三区 | 日本不卡免费新一区二区三区| aⅴ一区二区三区无卡无码| 日本人的色道www免费一区| 国模精品一区二区三区视频| 亚洲乱色熟女一区二区三区蜜臀 | 精品欧洲AV无码一区二区男男| 无码AV天堂一区二区三区| 中文字幕精品一区二区三区视频| 久久影院亚洲一区| 亚洲无线码在线一区观看| 91久久精一区二区三区大全| 亚洲乱色熟女一区二区三区丝袜 | 精品国产精品久久一区免费式| 国产精品一区二区毛卡片| 怡红院一区二区三区| 亚洲视频一区二区| 91一区二区三区| 久久婷婷色一区二区三区| 任你躁国语自产一区在| 国产精品一区视频| 动漫精品第一区二区三区| 91国在线啪精品一区| 在线日产精品一区| 亚洲AV无码一区二区三区国产| 国产一区二区视频在线播放| 麻豆aⅴ精品无码一区二区|