99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫FIT5147、代做Python編程設計
代寫FIT5147、代做Python編程設計

時間:2025-03-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Monash University
FIT5147 Data Exploration and Visualisation
Semester 1, 2025
Data Exploration Project
Part 1: Data Exploration Project Proposal
Part 2: Data Exploration Project Report
You are asked to explore and analyse data about a topic of your choice. It is an individual assignment and
worth 35% of your total mark for FIT5147. Part 1 Project Proposal contributes 2% and Part 2 Project Report
contributes 33%.
Relevant Learning Outcome
● Perform exploratory data analysis using a range of visualisation tools.
Overview of the Assessment Tasks
1. Identify the project topic, some related questions that you want to address, and the data source(s)
that you will be using to answer those questions.
2. Submit your Project Proposal (Part 1) in the Assessments section of Moodle in Week 3.
3. Discuss with your tutor in your Week 3 Applied Session (after the submission in Moodle) and wait
for approval from your tutor before proceeding further. Do not seek approval from the lecturer.
4. Collect data and wrangle it into a suitable form for analysis using whatever tools you like (e.g., Excel,
R, Python).
5. Explore the data visually to answer your original questions and/or to find other interesting insights
using Tableau or R. The exploration must rely on visualisations and visual analysis, but can analytical
methods or statistical analysis where appropriate.
6. Write a report detailing your findings and the methods that you used. This must include properly
captioned figures demonstrating your visual analysis (i.e. your visualisations must be referred to
correctly in your report).
7. The Project Report (Part 2) is due in Week 7.
Read the rest of this document before deciding on your project topic, as the proposal is for the entire Data
Exploration Project and Data Visualisation Project, which is the second major assignment of this unit. See
the end of this document for an example proposal and potential data sources to get started. Be careful not
to copy this proposal; it is an example proposal, not template text.
Choosing a Topic and Data
The choice of topic, data, and the questions you seek to answer should allow for interesting and detailed
analysis in the Data Exploration Project (DEP) and the subsequent Data Visualisation Project (DVP, due at the
end of semester), which involves presenting the findings from your DEP in a specifically designed narrative
interactive visualisation format.
Good questions are general and not linked to specific parts of the data, allowing for more open-ended and
exploratory analysis. For instance, asking “Where is the safest part of the network?”is a good question that
lets you explore various interpretations of how to link terms like “where” and “safest” to the data about a
network, whereas “Which region has the lowest value of number-of-deaths?” is not a very good question as
it is very specific to the data, is easy to answer with one visualisation and therefore limits the exploration
and visualisation possibilities.
It is strongly recommended that you avoid questions that are:
● too easy to answer (e.g., what is the correlation between x and y, what is the average value of z
variable, what are the top/bottom N values), or
● too difficult to answer (the work would take longer than the time available in the unit), or
● not relevant to the unit (e.g., training a machine learning model), or
● are not possible to answer from the available data.
Proposals with such questions will be rejected. If you are in doubt, talk to teaching staff during face-to-face
teaching times or ask for confirmation on Ed.
How do you know if you have appropriate data? This depends on your topic and questions. You should
ensure your data is big enough, i.e., has enough breadth and depth to invite interesting exploration.
Combining data from different data sources is an ideal way to help add to the originality of the topic. To
encourage different visualisation techniques your data will likely have a mixture of different data types.
Time series (whether this be aggregated or detailed, such as months and years, or milliseconds) may be
useful for your topic, and spatial, relational or text based data add useful complexity. If in doubt, talk to
teaching staff during face-to-face teaching times or in a consultation before the due date.
The chosen topic should be topical and some of the data should be recently collected, ideally from the last
two or three years. The data must be accessible to the teaching staff, so the use of open data is
encouraged (see the list of suggested data sources at the end of this document). Use of closed or
proprietary data is allowed as long as explicit permission for use in this assignment is granted by the
original authors or copyright holders. If you have closed data, you must still make it available to your
teaching staff to access, i.e., via a shared Google Drive.
Avoid common topics. Common topics including COVID-19, Netflix, AirBnB, car accidents, crime, house
sales, car sales, world cup soccer, or electric vehicle sales should be avoided. Topics similar to the proposal
example at the end of this document, i.e., traffic accidents and poor weather, must also be avoided. If you
do have personal motivation for any of these mentioned common topics, you will need to propose a
completely new angle to exploring the theme through novel questions with a mixture of new data sources.
It is highly recommended to discuss your intentions with the tutor of your Applied Session prior to the
proposal submission to avoid immediate rejection of the proposal.
Part 1: Project Proposal (2%)
Write a one-page PDF document consisting of the following sections:
1. Project Title
A descriptive title for your project.
2. Topic Introduction
One paragraph introducing the topic. This should include why it is a topical subject (for example,
has it been in the news recently), and who might benefit from the insights you seek from your
questions.
3. Motivation
One paragraph describing why you personally are motivated to study this topic.
4. Questions
Three questions you wish to answer using the data.
5. Data source(s)
Briefly describe the data source(s) you will use. This should include: URLs of data source(s) and a
description for each source: what is the data about, what is the size of the data (e.g., number of
rows, number of columns), the type of data (e.g., tabular, spatial, relational, or textual), the type of
attributes (e.g., categorical, ordinal, etc.) and the temporal intervals and period (e.g., monthly
between 2019 and 2023).
6. References
The bibliographical details of any references you have cited in the previous sections.
Include your full name, student ID, tutor names, and Applied Session class number. This can be in the
document header or footer. There should be no cover page.
Part 2: Data Exploration (33%)
The report should have the following structure:
1. Introduction
Topic detail, problem description, questions, and brief motivation.
2. Data Wrangling and Checking
Description of the data and data sources with URLs of the data, the steps in data wrangling
(including data cleaning and data transformations) and tools that you used. The data checking that
you performed, errors that you found, your method and justification for how you corrected errors,
and the tools that you used. A comprehensive checking process is expected to justify data
correctness, even if the data set is believed to be clean.
3. Data Exploration
Description of the data exploration process with details of the visualisations (including figures and
descriptions of findings) and statistical tests (if applicable) you used, what you discovered, and what
tools you used.
4. Conclusion
Summary of what you learned from the data and how your data exploration process answered (or
didn’t answer) your original questions.
5. Reflection
Brief description of what lessons you learnt in this project and what you might have done differently
in hindsight.
6. Bibliography
Appropriate references and bibliography (this includes acknowledgements to online references or
sources that have influenced your exploration) using either the APA or IEEE referencing system.
Include your full name, student ID, tutor names, and Applied Session class number. This may be on a cover
page, or in the header or footer of the first page.
The written report should be not longer than 10 pages for all sections mentioned above, excluding cover
page, table of contents and appendix. Your written report will be the sole basis for judging the quality of the
data checking, data wrangling, data exploration, as well as the degree of difficulty. Thus, include sufficient
information in the report. It should, for instance, contain images of visualisations used for exploration and
the results of any statistical analysis. You should include any analysis that you carry out even if it is
incomplete or inconclusive as it demonstrates that you have thoroughly explored the data set.
If you wish to provide additional material, an Appendix of up to 5 pages may be added at the end of the
document. However, the Appendix will not be marked. Therefore, you should only use it to provide
supplementary material that is not essential to the report or the reader's understanding. Be sure to clearly
title this section as Appendix.
Marking Rubric
Part 1: Project Proposal (2%)
● Completeness and Timeliness [1%]: All components of the Proposal are included and it is submitted
on time.
● Suitability and Clarity [1%]: Motivation, Questions and Data Sources.
Motivation: A well-formulated project description with detailed information; a compelling and worthwhile topic to
explore and visualise as a real-world problem.
Questions: Three well-crafted questions that can be clearly answered through data visualisations. Each question
requires sophisticated analysis of relationships and patterns across multiple attributes and demonstrates potential for
innovative visualisation approaches to reveal insights and complex patterns.
Data Sources: A clear description of data sources and datasets, including justification for which questions you will
answer with each. The data must be sufficiently large or complex to require exploration and analysis. All datasets must
be easily available, with URLs provided. For private and proprietary data, evidence of permission and a link to the
dataset must be provided.
After submission you will meet with your tutor during the Week 3 Applied Session to discuss your Project
Proposal, receive feedback and ideally approval to start. If your proposal is rejected, your tutor will specify
the reasons and suggest areas for improvement. You will need to make these amendments to your proposal
and get it approved by your tutor prior to commencing your project work.
Part 2: Project Report (33%)
Criteria Below 50% Pass (50%+) Credit (60%+) HD (80%+)
Data Complexity,
Wrangling, Checking
and Cleaning (7%)
Inappropriate checking,
cleaning, or wrangling.
0 if no demonstration of
data checking and
cleaning.
Appropriate data
cleaning and checking.
Demonstrated ability to
get data into R or
Tableau;
Good choices and clear
justifications for error
checking, cleaning and
transforming of
non-tabular data (e.g.
spatial, relational,
textual); large datasets
(observations or
dimensions) and/or
multiple data sets.
Excellence in data
processing
demonstrated and
documented. Evidence
of significant complexity
in the wrangling,
cleaning,
transformation, or data
collection (e.g.
scrapping).
Data Visualisation and
Design Choices (9%)
No visualisations;
unsuitable or poor
choice of visualisations;
pixelated / poor quality
images or illegible
visualisations.
0 if not using Tableau or
R.
Suitable visualisations,
which are well
presented, described,
readable and
interpretable.
Visualisations are
appropriate for the
intended purpose;
appropriate labeling of
axes and visualisations;
clear legends when
needed; saliency of
patterns and trends.
Variety of high-quality,
complex and/or creative
visualisations with high
attention to detail.
Clearly justified design
choices incl.
visualisation idioms,
choice of visual
variables, layout and
labelling.
Analytical Methods and
Interpretations of Data
and Topic Questions
(9%)
Unsuitable analysis or
misinterpretation of the
data and topics
questions. 
0 if no data analysis is
demonstrated.
Demonstrated suitable
analysis and
interpretation of the
data and topic
questions.
Analysis that is
appropriate for the
intended purpose;
justification and
explanation of the
exploration process and
use of statistical
measures; identification
of trends, patterns, and
insights.
High quality of visual
analysis demonstrated.
Sophisticated and
correctly used analytical
methods such as
clustering;
dimensionality
reduction; sophisticated
aggregation and/or
filtering; non-linear
model fitting; correct
use of statistical tests;
or complex time series
analysis.
Written Report: Quality
and Completeness (8%)
Poor report, or missing
sections.
Good report with logical
structure with all the
expected sections:
Introduction, Data
Wrangling, Data
Checking, Data
Exploration, Conclusion,
Reflection, Bibliography.
Referencing of sources,
figures and tables.
Correct grammar and
spelling.
High quality of writing
and figures/images with
minimal errors. Correct
referencing of figures
and tables within the
text, and correctly used
academic referencing of
sources.
Professional report with
excellence of writing
combined with high
quality figures/images.
Clearly articulated
findings; awareness of
limitations; deep
exploration; thorough
conclusions.
Originality 
Since this is academic work, it must be original and clearly distinguish between your own contributions and 
those based on other’s work. If you include data, facts, opinions or any other written or graphical 
information from another source, you must cite and reference it according to the APA or IEEE style guide. 
This includes third-party programming code, software used in data exploration and analysis, and any 
definitions or descriptions of concepts or software. Direct quotations or reproductions must adhere to the 
appropriate APA or IEEE style. 
In your report you are encouraged to repeat the questions from your proposal. This is the only 
self-plagiarism that is allowed. If you are retaking this unit from a previous semester, you must choose a 
completely new topic and dataset. The topic and dataset cannot have been used in any other unit. You may 
not reuse any code or written content from previous assessment tasks for any unit. Additionally, content 
from previous assignments or sample reports cannot be used. 
You may use Generative AI tools, such as ChatGPT, to improve writing and expression. However, your writing 
must be logically structured, clear and concise. Repetitive, poorly structured, or vague gibberish as often 
generated by Generative AI tools will result in a low grade. AI is generally unsuitable for data checking, 
cleaning, wrangling, exploration and visualisation of this level and should be avoided. It is important to 
remember that generated content can be biased. Any use of Generative AI in the preparation of your 
assessment must be acknowledged at the end of your submitted document. 
If concerns arise regarding the originality of your work – whether due to plagiarism, collusion, contract 
cheating, or the use of unapproved software – your academic integrity will be reviewed. Confirmed 
breaches of academic integrity may result in penalties affecting your assignment mark, this unit, or even 
your enrolment. 
Submission and Due Dates 
Once you have completed your work, take the following steps to submit your work. 
1. Save your proposal or report as a PDF document. 
2. Name your file using the following structure: Proposal_Surname_StudentID.pdf or 
DEP_Surname_StudentID.pdf
3. Submit and upload your document. 
● Project Proposal: Submit a one-page PDF in Week 3. 
● Project Report: Submit a 10-page PDF (excluding cover page and appendix) in Week 7.
See Moodle for dates and times. 
Your assignment must show a status of ”Submitted for grading” before it can be marked. Any submission in 
“Draft” mode will not be marked. 
Late Submissions 
● There will be zero marks for late Project Proposal submissions. Everyone must submit the Project 
Proposal. Even if the deadline has passed, you must still submit a proposal (with a grade of 0) as 
your project must be approved before you can continue working on the Data Exploration Project. 
The proposal is a hurdle requirement. If it is not submitted and approved by your tutor, the mark for 
the Data Exploration Project is 0. 
下面這一部分全在說原創性
● For the Project Report, submissions received after the deadline (or after an extended deadline for
those with an extension or special consideration) will be penalised at 5% of the total available
mark [33%] per calendar day up to a maximum of 7 days. If submitted after 7 days, it will receive
zero marks and no feedback will be provided.
● For further information on eligibility for Extensions or Special Consideration, see:
https://www.monash.edu/students/admin/assessments/extensions-special-consideration
Example Data Sources
The following is a list of data sources to get started. Feel free to use these as a source of inspiration and
ideas for your project. You are not limited to the data sources listed below.
● Data search tools and repositories, e.g.:
○ Google dataset search: https://toolbox.google.com/datasetsearch
○ Google Trends: https://www.google.com/trends/explore
○ Google Ngram Viewer: https://books.google.com/ngrams
○ Registry of Open Data on AWS: https://registry.opendata.aws/
○ Kaggle: https://www.kaggle.com Note that using data from Kaggle exclusively is not
acceptable, you must use at least one additional data source.
○ Science Hack Day: http://sciencehackday.pbworks.com/w/page/24500475/Datasets
● Open local and national government data portals, e.g.:
○ Victorian Government Data: http://data.vic.gov.au/
○ Australian Government Data: http://data.gov.au/
○ National Map: https://nationalmap.gov.au/ (Australian data)
○ Australian Bureau of Statistics: https://www.abs.gov.au/statistics
○ Atlas of Living Australia https://ala.org.au/
○ European Union Open Data: https://data.europa.eu/en
○ UK Government Open Data: https://data.gov.uk/
○ U.S. Government Open Data: https://www.data.gov/
● Humanitarian data sources, e.g.:
○ UNdata: http://data.un.org/
○ The World Bank Data Catalog: https://datacatalog.worldbank.org/
○ Our World in Data: https://ourworldindata.org/
○ Berkeley Library Health Statistics:
http://guides.lib.berkeley.edu/publichealth/healthstatistics/rawdata
● Open corporate/industry data, e.g.:
○ Uber: https://movement.uber.com/?lang=en-AU
○ Inside Airbnb: http://insideairbnb.com/get-the-data.html
Example Project Proposal
Please note this mock example is relatively old now. We expect your data to ideally include recent data, i.e.,
data from 2022, 2023 or even 2024. It is possible to complete this example project with only Data Source A
and B, but C provides different opportunities and additional difficulty when doing the exploration and
visualisations. If done well, this added depth and difficulty can gain extra marks but might take longer to
complete. The student could use both datasets A and B to identify temporal aspects in the data, such as
accidents near to sunset and sunrise across the whole dataset, but dataset C allows them to identify areas
which are poorly lit and see if this correlates with the spatial pattern of pre-sunrise and post-sunset
accidents. Furthermore, whilst Data Sources A and C are currently tabular data, they can be converted to
spatial features and spatial analysis can be carried out.
Name: Jesse van Dijk, Student ID: 12345678, Teaching Associate: Jo Bloggs & Alex Smith, Applied 01.
Project Title: Causes of Serious Bicycle Accidents in Canberra
Introduction
Recent media and industry reports indicate that Australian roads are becoming even more dangerous for cyclists
[1,2]. I believe this is an important topic for many audiences such as cyclists, road safety officers, and public
health policy makers. Therefore I want to find out more about the factors that affect bicycle accidents in
Canberra.
Motivation
I am a keen cyclist and am concerned about cycling in Australia. I have recently moved to Canberra from the
Netherlands where cycling is very safe and accidents linked with road vehicles is unusual. I have noticed it is
difficult to see during sunset on a number of roads and would like to see if this pattern is evident in the data.
Questions
1. What are the most common kinds of serious bicycle accidents in Canberra, and how do these vary over
different time periods (e.g. hour of day/day of week/month/season)?
2. How do lighting conditions affect these accidents?
Data sources
A. ACT Road Cyclist Crashes 2012 to 2021, which have been reported by the Police or the Public through
the AFP Crash Report Form. This data is tabular data: ~1K rows × 11 columns. It has both spatial and
temporal attributes including the geographical (latitude and longitude) location and a datetime stamp
for the time of accident. Some numerical and simple text attributes relating to the incident. i.e. number
of casualties, description of accident, including direction of traffic.

B. Canberra’s sunrise and sunset times, 2012 to 2021. Tabular data in HTML: ~365 rows × 4 columns for
each year to be scrapped from sunrise website. Columns are simply date, time of sunrise, time of sunset
and hours of daylight.

C. ACT Streetlights, 2021. Tabular data in CSV format with ~80K rows × 10 columns. These include latitude
and longitude for the streetlight location and various text columns including lamp type, Luminaire,
height and street and suburb name. There is no date column for the age of the lamp, but the source of
the data is dated from 2017 and was last updated in Nov 2021.

Data Source A will be used to address Question 1, whilst A to C will allow me to answer Question 2.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:遭遇米來花強制下款客服電話怎么找?
  • 下一篇:遭遇金豆錢包強制下款怎么辦?如何聯系金豆錢包客服呢?
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品538一区二区在线| 一区二区成人在线视频| 国产精选一区二区三区| 久久只精品国产| 日韩午夜电影av| 欧美日韩五月天| 色综合视频一区二区三区高清| 日韩成人免费电影| 亚洲精品高清在线| 国产精品网曝门| 久久综合九色欧美综合狠狠| 91麻豆精品国产| 色综合色狠狠综合色| 午夜婷婷国产麻豆精品| 精品一区二区三区av| 国产一区二区看久久| 成人福利电影精品一区二区在线观看 | 欧美极品少妇xxxxⅹ高跟鞋 | 久久99热狠狠色一区二区| 99久久久国产精品| 久久综合久久久久88| 国产精品女同一区二区三区| 亚洲欧美国产毛片在线| 免费的成人av| 色哟哟国产精品免费观看| 日韩亚洲欧美高清| 久久久高清一区二区三区| 中文字幕一区二区5566日韩| 天天综合色天天| 亚洲欧美另类在线| 老汉av免费一区二区三区| 青青草97国产精品免费观看无弹窗版 | 久久一日本道色综合| 日韩精品在线一区| 婷婷夜色潮精品综合在线| fc2成人免费人成在线观看播放| 欧美日韩国产在线观看| 伊人色综合久久天天人手人婷| 久久99久国产精品黄毛片色诱| 91亚洲国产成人精品一区二三| 欧美一区二区三区免费观看视频 | 亚洲卡通欧美制服中文| 国产又粗又猛又爽又黄91精品| 在线观看一区二区视频| 欧美国产日韩a欧美在线观看| 亚洲美女视频一区| 狠狠色狠狠色合久久伊人| 欧美一区二区三区四区视频 | 亚洲黄色尤物视频| 国产99久久久精品| 9191久久久久久久久久久| 日日噜噜夜夜狠狠视频欧美人| 99re成人在线| 久久青草国产手机看片福利盒子 | 美女精品一区二区| 欧美中文字幕不卡| 久久精品国产一区二区三 | 欧美午夜一区二区三区| 日日摸夜夜添夜夜添亚洲女人| 欧美三级韩国三级日本一级| 1024亚洲合集| 欧美日韩在线播放一区| 性做久久久久久免费观看| 91精品国产91久久综合桃花 | 伊人性伊人情综合网| 欧美一级日韩一级| 成人av午夜影院| 天天操天天干天天综合网| 日韩欧美国产麻豆| 欧美日韩成人综合天天影院| 另类小说视频一区二区| 亚洲国产精品成人综合色在线婷婷 | 欧美一区三区四区| 国产精品1024| 香蕉久久夜色精品国产使用方法 | 亚洲视频一区二区在线| 久久网站最新地址| 在线观看视频一区二区| 成人免费福利片| 久久电影网站中文字幕| 欧美极品xxx| 久久精品一区蜜桃臀影院| 日精品一区二区| 欧美日韩国产综合久久| 欧美变态tickle挠乳网站| 91麻豆精品国产自产在线| 在线视频你懂得一区| 91一区二区三区在线观看| 国内成+人亚洲+欧美+综合在线| 艳妇臀荡乳欲伦亚洲一区| 国产精品免费视频一区| 亚洲一区二区在线视频| 丝袜美腿亚洲色图| 男女视频一区二区| 亚洲成人先锋电影| 美腿丝袜亚洲一区| 蜜桃视频在线观看一区| 亚洲国产欧美在线| 夜夜嗨av一区二区三区中文字幕| 精品国精品国产| 中文字幕一区二区日韩精品绯色| 亚洲精品免费视频| 综合电影一区二区三区 | 91麻豆精品国产91久久久更新时间 | 欧美天堂亚洲电影院在线播放| 成人免费视频app| 99久久综合狠狠综合久久| 色哟哟在线观看一区二区三区| 欧美三级中文字幕在线观看| 国产精品乱人伦一区二区| 亚洲欧洲性图库| 午夜国产不卡在线观看视频| 久色婷婷小香蕉久久| 国产精品一区二区在线观看网站| 久久久av毛片精品| 日本成人在线网站| 国产一区二区三区观看| 欧美午夜精品电影| 精品少妇一区二区三区在线播放| 国产做a爰片久久毛片| 欧美一级精品大片| 国产精品丝袜一区| 日韩和欧美一区二区| 激情综合网av| 久久久精品黄色| 午夜精品视频一区| 国精品**一区二区三区在线蜜桃| 成年人国产精品| 日韩精品一区二| 日韩一区中文字幕| 日精品一区二区三区| 国产精品国产三级国产aⅴ中文| 国产精品国产三级国产普通话99| 日韩成人精品视频| 91精品国产综合久久福利| 欧美一级日韩不卡播放免费| 亚洲色欲色欲www| 一本色道**综合亚洲精品蜜桃冫| 精品一区二区综合| 精品伦理精品一区| 久久超碰97人人做人人爱| 在线一区二区视频| 亚洲大片精品永久免费| 91美女在线观看| 国产精品久久久久永久免费观看 | 久久精品国产网站| 国产东北露脸精品视频| 日韩**一区毛片| 久久国产精品免费| 老司机精品视频在线| 日韩成人精品视频| 欧日韩精品视频| 中文字幕视频一区| 色哟哟一区二区在线观看| 一区二区三区毛片| 欧美日韩亚洲不卡| 老色鬼精品视频在线观看播放| 一区二区免费在线| 色婷婷av一区二区三区之一色屋| 亚洲国产精品久久久久婷婷884| 欧美精品高清视频| 精品一区二区三区在线观看| 欧美三电影在线| av在线播放不卡| 久久99精品久久久久婷婷| 亚洲国产精品黑人久久久 | 91小宝寻花一区二区三区| 亚洲人成精品久久久久久| 91精品国产欧美一区二区成人| gogogo免费视频观看亚洲一| 中日韩av电影| 精品国产一区二区在线观看| 91精品婷婷国产综合久久竹菊| 色狠狠桃花综合| 国产精品456露脸| 午夜精品久久久久久久蜜桃app| 亚洲免费在线播放| 精品一区在线看| 日韩美女精品在线| 亚洲欧美日韩国产一区二区三区| 亚洲女同ⅹxx女同tv| 欧美久久高跟鞋激| 成人免费观看av| 成人午夜电影网站| 欧美日韩免费一区二区三区视频| 成人国产免费视频| 麻豆精品视频在线观看| 亚洲午夜在线视频| 国产精品另类一区| 亚洲午夜影视影院在线观看| 久久久国产一区二区三区四区小说 | 亚洲精品中文字幕乱码三区 | 成人午夜激情视频| 免费观看成人鲁鲁鲁鲁鲁视频| 亚洲精品一区二区三区香蕉| 欧美国产综合色视频| 亚洲裸体在线观看| 悠悠色在线精品| 久久国产精品露脸对白| 欧洲在线/亚洲|