99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

EIE553代做、代寫EIE553程序語言
EIE553代做、代寫EIE553程序語言

時間:2025-03-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



EIE553 Lab 1 1
EIE553 Security in Data Communication
Lab 1: RSA Public-Key Encryption
and Signatures
Report Deadline: 11:59 pm, Mar. 2, 2025 HKT
(Credits: SEED Labs 2.0 by Prof. Du, Wenliang)
1 Overview
RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure 
communication. The RSA algorithm first generates two large random prime numbers, and then use them 
to generate public and private key pairs, which can be used to do encryption, decryption, digital signature 
generation, and digital signature verification. The RSA algorithm is built upon number theories, and it can 
be quite easily implemented with the support of libraries.
The learning objective of this lab is for students to gain hands-on experiences on the RSA algorithm. 
From lectures, students should have learned the theoretic part of the RSA algorithm, so they know math ematically how to generate public/private keys and how to perform encryption/decryption and signature 
generation/verification. This lab enhances student’s understanding of RSA by requiring them to go through 
every essential step of the RSA algorithm on actual numbers, so they can apply the theories learned from 
the class. Essentially, students will be implementing the RSA algorithm using the C program language. The 
lab covers the following security-related topics:
• Public-key cryptography
• The RSA algorithm and key generation
• Big number calculation
• Encryption and Decryption using RSA
• Digital signature
• X.509 certificate
Lab environment: The SEED Lab series (including this one) has been tested on the SEED Ubuntu 20.04
VM. In our lab at CF105, the VM is pre-built and you can connect to it via:
1. Run Hyper-V Virtual Machine Connection
2. Select “SEED Ubuntu 20.04”
EIE553 Lab 1 2
3. Click Start
4. Input username: seed and password: dees
NOTE: The Ubuntu 20.04 VM is not strictly necessary. You can complete or implement the tasks 
below using your preferred IDE (on your own PC) and programming language (though C/C++
is recommended).
NOTE: The PC might REBORN AFTER REBOOT AND SHARED WITH OTHER STUDENTS. 
Save your work in an external drive and back up your files before rebooting or shutting down.
You also can download a pre-built image from the SEED website, and run VM on your own PC.
The setup can be found: https://seedsecuritylabs.org/labsetup.html (for either Intel/Apple/AMD CPU)
How to build SEED VM: https://github.com/seed-labs/seed-labs/blob/master/manuals/vm/seedvm-from scratch.md
A step-by-step guideline (prepared by TAs) on how to build SEED VM on a Windows PC has been 
uploaded to Blackboard for your reference.
2 Background
The RSA algorithm involves computations on large numbers. These computations cannot be directly con ducted using simple arithmetic operatorsin programs, because those operators can only operate on primitive 
data types, such as 32-bit integer and 64-bit long integer types. The numbers involved in the RSA algorithms 
are typically more than 512 bits long. For example, to multiple two 32-bit integer numbers a and b, we just
EIE553 Lab 1 3
// Assign a value from a decimal number string
BN_dec2bn(&a, "12345678901112231223");
// Assign a value from a hex number string
BN_hex2bn(&a, "2A3B4C55FF77889AED3F");
// Generate a random number of 128 bits 
BN_rand(a, 128, 0, 0);
// Generate a random prime number of 128 bits 
BN_generate_prime_ex(a, 128, 1, NULL, NULL, NULL);
void printBN(char *msg, BIGNUM * a)
{
// Convert the BIGNUM to number string 
char * number_str = BN_bn2dec(a);
// Print out the number string 
printf("%s %s\n", msg, number_str);
// Free the dynamically allocated memory 
OPENSSL_free(number_str);
}
need to use a*b in our program. However, if they are big numbers, we cannot do that any more; instead, 
we need to use an algorithm (i.e., a function) to compute their products.
There are several libraries that can perform arithmetic operations on integers of arbitrary size. In this 
lab, we will use the Big Number library provided by openssl. To use this library, we will define each big 
number as a BIGNUM type, and then use the APIs provided by the library for various operations, such as 
addition, multiplication, exponentiation, modular operations, etc.
2.1 BIGNUM APIs
All the big number APIs can be found from https://linux.die.net/man/3/bn. In the following, 
we describe some of the APIs that are needed for this lab.
• Some of the library functions requires temporary variables. Since dynamic memory allocation to cre ate BIGNUMs is quite expensive when used in conjunction with repeated subroutine calls, a BN CTX 
structure is created to holds BIGNUM temporary variables used by library functions. We need to 
create such a structure, and pass it to the functions that requires it.
BN_CTX *ctx = BN_CTX_new()
• Initialize a BIGNUM variable.
BIGNUM *a = BN_new()
• There are a number of ways to assign a value to a BIGNUM variable.
• Print out a big number.
EIE553 Lab 1 4
BN_sub(res, a, b);
BN_add(res, a, b);
/* bn_sample.c */ 
#include <stdio.h>
#include <openssl/bn.h> 
#define NBITS 256
void printBN(char *msg, BIGNUM * a)
{
/* Use BN_bn2hex(a) for hex string
* Use BN_bn2dec(a) for decimal string */ 
char * number_str = BN_bn2hex(a); 
printf("%s %s\n", msg, number_str);
OPENSSL_free(number_str);
}
int main ()
{
BN_CTX *ctx = BN_CTX_new();
BIGNUM *a = BN_new(); 
BIGNUM *b = BN_new(); 
BIGNUM *n = BN_new(); 
BIGNUM *res = BN_new();
• Compute res = a −b and res = a + b:
• Compute res = a ∗b. It should be noted that a BN CTX structure is need in this API.
BN_mul(res, a, b, ctx)
• Compute res = a ∗b mod n:
BN_mod_mul(res, a, b, n, ctx)
• Compute res = ac mod n:
BN_mod_exp(res, a, c, n, ctx)
• Compute modular inverse, i.e., given a, find b, such that a ∗ b mod n = 1. The value b is called 
the inverse of a, with respect to modular n.
BN_mod_inverse(b, a, n, ctx);
2.2 A Complete Example
We show a complete example in the following. The program can be found from the Labsetup.zip file 
that you can download from the lab’s webpage. In this example, we initialize three BIGNUM variables, a, 
b, and n; we then compute a ∗b and (ab mod n).
EIE553 Lab 1 5
$ vim bn_sample.c
$ gcc bn_sample.c -lcrypto -o output
$ ./output
Compilation. We can use the following command to compile bn_sample.c (the character after - is the 
letter £, not the number 1; it tells the compiler to use the crypto library).
Click “Open in Terminal”
Create bn_sample.c file
Paste your code into the file, Press Esc on your keyboard, input “: wq” to save file and quit.
Complie bn_sample.c
Run bn_sample.c
// Initialize a, b, n
BN_generate_prime_ex(a, NBITS, 1, NULL, NULL, NULL); 
BN_dec2bn(&b, "273489463796838501848592769467194369268");
BN_rand(n, NBITS, 0, 0);
// res = a*b 
BN_mul(res, a, b, ctx);
printBN("a * b = ", res);
// res = aˆb mod n 
BN_mod_exp(res, a, b, n, ctx); 
printBN("aˆc mod n = ", res);
return 0;
}
EIE553 Lab 1 6
p = F7E75FDC469067FFDC4E847C51F452DF
q = E85CED54AF57E53E092113E62F436F4F 
e = 0D88C3
$ python3 -c ’print("A top secret!".encode("utf-8").hex())’
4120746f702073656372657421
3 Lab Tasks
NOTE: You must explicitly disclose the use of any GenAI tools (e.g., ChatGPT and DeepSeek) if utilized 
in completing the tasks below.
3.1 Task 1: Deriving the Private Key (20 marks)
Let p, q, and e be three prime numbers. Let n = p*q. We will use (e, n) as the public key. Please 
calculate the private key d. The hexadecimal values of p, q, and e are listed in the following. It should be 
noted that although p and q used in this task are quite large numbers, they are not large enough to be secure. 
We intentionally make them small for the sake of simplicity. In practice, these numbers should be at least 
512 bits long (the one used here are only 128 bits).
Hint: The private key d (which is multiplicative inverse of e mod n) can be computed via the extended Euclidean 
algorithm (introduced in Lecture 4). The pseudocode is
Input: 
 - Public key (N, e)
 - Prime factors p and q of N (N = pq)
Output:
 - Private key d
Steps:
1. Compute ϕ(N) = (p - 1) * (q - 1) // Euler's totient function
2. Use the Extended Euclidean Algorithm to find d such that:
 (e * d) ≡ 1 mod ϕ(N)
Extended Euclidean Algorithm:
 Function ExtendedEuclidean(a, b):
 If b == 0:
 Return (a, 1, 0) // gcd(a, b) = a, and coefficients x = 1, y = 0
 Else:
 (gcd, x1, y1) = ExtendedEuclidean(b, a mod b)
 x = y1
 y = x1 - (a // b) * y1
 Return (gcd, x, y)
3. (gcd, d, _) = ExtendedEuclidean(e, ϕ(N))
4. If gcd != 1:
 Return "No modular inverse exists (e and ϕ(N) are not coprime)"
 Else:
 Ensure d is positive by computing d = d mod ϕ(N)
 Return d
3.2 Task 2: Encrypting a Message (20 marks)
Let (e, n) be the public key. Please encrypt the message "A top secret!" (the quotations are not 
included). We need to convert this ASCII string to a hex string, and then convert the hex string to a BIGNUM 
using the hex-to-bn API BN hex2bn(). The following python command can be used to convert a plain 
ASCII string to a hex string.
SEED Labs 2.0 VM (Ubuntu 20.04.2 LTS):
SEED Labs 1.0 VM (Ubuntu 16.04 LTS):
EIE553 Lab 1 7
n = DCBFFE3E51F62E09CE7032E2677A78946A849DC4CDDE3A4D0CB81629242FB1A5
e = 010001 (this hex value equals to decimal 65537) 
M = A top secret!
d = 74D806F9F3A62BAE331FFE3F0A68AFE35B3D2E4794148AACBC26AA381CD7D30D
C = 8C0F971DF2F3672B28811407E2DABBE1DA0FEBBBDFC7DCB67396567EA1E2493F
$ python3 -c
’print(bytes.fromhex("4120746f702073656372657421").decode("utf-8"))’ 
A top secret!
M = I owe you $2000.
M = Launch a missile.
S = 643D6F34902D9C7EC90CB0B2BCA36C47FA37165C0005CAB026C0542CBDB6802F
e = 010001 (this hex value equals to decimal 65537)
n = AE1CD4DC432798D933779FBD46C6E1247F0CF1****95113AA51B450F18116115
The public keys are listed in the followings (hexadecimal). We also provide the private key d to help 
you verify your encryption result.
Requirement: In your lab report, you should change the message to "Your Name + Student ID" instead of using 
"A top secret!" in the above demo.
3.3 Task 3: Decrypting a Message (20 marks)
The public/private keys used in this task are the same as the ones used in Task 2. Please decrypt the following 
ciphertext C, and convert it back to a plain ASCII string.
You can use the following python command to convert a hex string back to to a plain ASCII string 
(works in both VM versions).
Requirement: In your lab report, you should decrypt the ciphertext of "Your Name + Student ID" instead of 
using "A top secret!" in the above demo.
3.4 Task 4: Signing a Message (20 marks)
The public/private keys used in this task are the same as the ones used in Task 2. Please generate a signature 
for the following message (please directly sign this message, instead of signing its hash value):
Please make a slight change to the message M, such as changing $2000 to $3000, and sign the modified 
message. Compare both signatures and describe what you observe.
Requirement: In your lab report, you should change the message to "Your PolyU email address" instead of 
using "I owe you $2000" in the above demo.
3.5 Task 5: Verifying a Signature (20 marks)
Bob receives a message M = "Launch a missile." from Alice, with her signature S. We know that 
Alice’s public key is (e, n). Please verify whether the signature is indeed Alice’s or not. The public key 
and signature (hexadecimal) are listed in the following:
Suppose that the signature above is corrupted, such that the last byte of the signature changes from 2F 
to 3F, i.e, there is only one bit of change. Please repeat this task, and describe what will happen to the 
verification process.
$ python -c ’print("A top secret!".encode("hex"))’
4120746f702073656372657421
EIE553 Lab 1 8
$ openssl s_client -connect www.example.org:443 -showcerts
Certificate chain
0 s:/C=US/ST=California/L=Los Angeles/O=Internet Corporation for Assigned 
Names and Numbers/OU=Technology/CN=www.example.org
i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 High Assurance
Server CA
-----BEGIN CERTIFICATE-----
MIIF8jCCBNqgAwIBAgIQDmTF+8I2reFLFyrrQceMsDANBgkqhkiG9w0BAQsFADBw 
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
......
wDSiIIWIWJiJGbEeIO0TIFwEVWTOnbNl/faPXpk5IRXicapqiII=
-----END CERTIFICATE-----
1 s:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 High 
Assurance Server CA
i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert High Assurance
EV Root CA
-----BEGIN CERTIFICATE-----
MIIEsTCCA5mgAwIBAgIQBOHnpNxc8vNtwCtCuF0VnzANBgkqhkiG9w0BAQsFADBs 
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
......
cPUeybQ=
-----END CERTIFICATE-----
3.6 (Optional) Task 6: Manually Verifying an X.509 Certificate (20 marks) (Optional)
In this task, we will manually verify an X.509 certificate using our program. An X.509 contains data about 
a public key and an issuer’s signature on the data. We will download a real X.509 certificate from a web 
server, get its issuer’s public key, and then use this public key to verify the signature on the certificate.
Step 1: Download a certificate from a real web server. We use the www.example.org server in 
this document. Students should choose a different web server that has a different certificate than the 
one used in this document (it should be noted that www.example.com share the same certificate with 
www.example.org). We can download certificates using browsers or use the following command:
The result of the command contains two certificates. The subject field (the entry starting with s:) of 
the certificate is www.example.org, i.e., this is www.example.org’s certificate. The issuer field (the 
entry starting with i:) provides the issuer’s information. The subject field of the second certificate is the 
same as the issuer field of the first certificate. Basically, the second certificate belongs to an intermediate 
CA. In this task, we will use CA’s certificate to verify a server certificate.
If you only get one certificate back using the above command, that means the certificate you get is signed 
by a root CA. Root CAs’ certificates can be obtained from the Firefox browser installed in our pre-built VM. 
Go to the Edit ➔ Preferences ➔ Privacy and then Security ➔ View Certificates. Search 
for the name of the issuer and download its certificate.
Copy and paste each of the certificate (the text between the line containing "Begin CERTIFICATE" 
and the line containing "END CERTIFICATE", including these two lines) to a file. Let us call the first one 
c0.pem and the second one c1.pem.
Step 2: Extract the public key (e, n) from the issuer’s certificate. Openssl provides commands to 
extract certain attributes from the x509 certificates. We can extract the value of n using -modulus. There 
is no specific command to extract e, but we can print out all the fields and can easily find the value of e.
EIE553 Lab 1 9
$ openssl x509 -in c0.pem -text -noout
...
Signature Algorithm: sha256WithRSAEncryption 
84:a8:9a:11:a7:d8:bd:0b:26:7e:52:24:7b:b2:55:9d:ea:30:
89:51:08:87:6f:a9:ed:10:ea:5b:3e:0b:c7:2d:47:04:4e:dd:
...... 
5c:04:55:64:ce:9d:b3:65:fd:f6:8f:5e:99:39:21:15:e2:71: 
aa:6a:88:82
$ cat signature | tr -d ’[:space:]:’
84a89a11a7d8bd0b267e52247bb2559dea30895108876fa9ed10ea5b3e0bc7
......
5c045564ce9db365fdf68f5e****2115e271aa6a8882
Step 3: Extract the signature from the server’s certificate. There is no specific opensslcommand to 
extract the signature field. However, we can print out all the fields and then copy and paste the signature 
block into a file (note: if the signature algorithm used in the certificate is not based on RSA, you can find 
another certificate).
We need to remove the spaces and colons from the data, so we can get a hex-string that we can feed into 
our program. The following command commands can achieve this goal. The tr command is a Linux utility 
tool for string operations. In this case, the -d option is used to delete ":" and "space" from the data.
Step 4: Extract the body of the server’s certificate. A Certificate Authority (CA) generatesthe signature 
for a server certificate by first computing the hash of the certificate, and then sign the hash. To verify the 
signature, we also need to generate the hash from a certificate. Since the hash is generated before the 
signature is computed, we need to exclude the signature block of a certificate when computing the hash. 
Finding out what part of the certificate is used to generate the hash is quite challenging without a good 
understanding of the format of the certificate.
X.509 certificates are encoded using the ASN.1 (Abstract Syntax Notation.One) standard, so if we can 
parse the ASN.1 structure, we can easily extract any field from a certificate. Openssl has a command called 
asn1parse used to extract data from ASN.1 formatted data, and is able to parse our X.509 certificate.
8:d=2 hl=2 l= 3 cons: cont [ 0 ]
10:d=3 hl=2 l= 1 prim: INTEGER :02
13:d=2 hl=2 l= 16 prim: INTEGER
:0E64C5FBC236ADE14B172AEB41C78CB0
... ...
1236:d=4 hl=2 l= 12 cons: SEQUENCE
1238:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
1243:d=5 hl=2 l= 1 prim: BOOLEAN :255
For modulus (n):
$ openssl x509 -in c1.pem -noout -modulus
Print out all the fields, find the exponent (e):
$ openssl x509 -in c1.pem -text -noout
EIE553 Lab 1 10
$ openssl asn1parse -i -in c0.pem -strparse 4 -out c0_body.bin -noout
$ sha256sum c0_body.bin
The field starting from 。 is the body of the certificate that is used to generate the hash; the field starting 
from @ is the signature block. Their offsets are the numbers at the beginning of the lines. In our case, the 
certificate body is from offset 4 to 1249, while the signature block is from 1250 to the end of the file. For
X.509 certificates, the starting offset is always the same (i.e., 4), but the end depends on the content length 
of a certificate. We can use the -strparse option to get the field from the offset 4, which will give us the 
body of the certificate, excluding the signature block.
Once we get the body of the certificate, we can calculate its hash using the following command:
Step 5: Verify the signature. Now we have all the information, including the CA’s public key, the CA’s 
signature, and the body of the server’s certificate. We can run our own program to verify whether the 
signature is valid or not. Openssl does provide a command to verify the certificate for us, but students are 
required to use their own programs to do so, otherwise, they get zero credit for this task.
4 Submission
You need to submit a detailed lab report, with screenshots, to describe what you have done 
and what you have observed. You also need to provide explanation to the observations that
are interesting or surprising. Please also list the important code snippets followed by 
explanation. Simply attaching code without any explanation will not receive credits.
OCTET STRING
OBJECT 
NULL

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:CE 451編程代寫、代做Python語言程序
  • 下一篇:質量流量計的信號輸出方式有哪些?
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美亚洲网站| 国产模特精品视频久久久久| 99在线精品视频在线观看| 欧美三级电影大全| 欧美在线|欧美| 亚洲理论在线观看| 一区二区三区中文在线观看 | 久久综合五月天婷婷伊人| 亚洲伦理在线| 国产视频一区二区在线观看 | 国产综合激情| 欧美色播在线播放| 欧美18av| 久久蜜桃av一区精品变态类天堂| 亚洲视频电影在线| 亚洲激情在线视频| 狠狠干综合网| 国产自产v一区二区三区c| 国产乱人伦精品一区二区| 欧美日韩国产色视频| 蜜桃视频一区| 欧美成人精品激情在线观看| 久久精精品视频| 欧美一区二区三区视频在线观看| 亚洲亚洲精品三区日韩精品在线视频| 亚洲国产天堂久久综合网| 伊人成人在线| 亚洲第一网站| 亚洲激情啪啪| 一本一本久久a久久精品综合妖精 一本一本久久a久久精品综合麻豆 | 狠狠综合久久av一区二区小说| 国产精品久久久久久久久免费桃花 | 欧美精品一区二区久久婷婷| 免费欧美日韩| 欧美va天堂| 欧美精品免费在线| 欧美日韩国产精品| 国产精品久99| 国产模特精品视频久久久久| 国产美女精品视频| 在线观看亚洲| 99re6这里只有精品| 中文国产成人精品| 午夜精品国产精品大乳美女| 欧美中文在线观看国产| 久久精品国产第一区二区三区| 久久久久久久综合色一本| 理论片一区二区在线| 欧美伦理视频网站| 国产精品腿扒开做爽爽爽挤奶网站 | 欧美专区日韩专区| 久久久久久9| 欧美成人精品一区二区| 国产精品久久久久久超碰| 国产日产精品一区二区三区四区的观看方式| 国产欧美日韩视频在线观看| 极品av少妇一区二区| 亚洲精品久久嫩草网站秘色| 亚洲综合国产| 久久精品国内一区二区三区| 亚洲欧美在线aaa| 美女被久久久| 国产精品亚洲一区二区三区在线| 黄色成人在线观看| 一区二区三区欧美视频| 久久久久久黄| 国产精品电影在线观看| 在线观看av不卡| 亚洲欧美区自拍先锋| 欧美国产欧美亚洲国产日韩mv天天看完整 | 亚洲免费小视频| 久久亚洲色图| 国产欧美日本| 一片黄亚洲嫩模| 免费不卡欧美自拍视频| 国产午夜精品麻豆| 在线一区二区日韩| 欧美电影免费网站| 激情综合自拍| 久久福利一区| 国产精品永久| 在线一区二区视频| 欧美日本高清视频| 亚洲福利小视频| 久久精品99国产精品| 国产精品久久久亚洲一区| 亚洲精品日本| 欧美激情一区二区三区| 亚洲国产mv| 美女在线一区二区| 在线观看欧美亚洲| 久久亚洲精品一区二区| 国产一区二区三区在线观看视频 | 欧美日韩视频在线观看一区二区三区 | 1024国产精品| 久久欧美中文字幕| 国内视频一区| 久久久久欧美精品| 尤物精品在线| 欧美激情一二三区| 亚洲激情欧美激情| 欧美日韩国产精品一卡| 日韩视频一区| 欧美日韩亚洲一区二区| 99热精品在线| 国产精品国产三级国产普通话三级 | 午夜一级久久| 国产专区欧美专区| 蜜臀久久99精品久久久画质超高清| 在线观看亚洲精品视频| 麻豆成人综合网| 日韩午夜在线电影| 国产精品毛片va一区二区三区| 亚洲欧美高清| 国外精品视频| 欧美激情一区二区| 亚洲婷婷免费| 国产一区二区日韩精品欧美精品| 久久精品国产77777蜜臀| 一区二区三区在线高清| 欧美大片在线看免费观看| 一区二区三区日韩精品视频| 国产精品三级视频| 久久综合色一综合色88| 日韩视频在线免费观看| 国产精品一区二区久激情瑜伽| 久久视频免费观看| 一区二区三区四区五区视频| 国产精品乱码| 欧美大胆a视频| 亚洲欧美高清| 亚洲靠逼com| 欧美视频中文字幕在线| 欧美在线一级va免费观看| 亚洲国产欧美在线| 国产精品视屏| 欧美精品18+| 先锋影音久久| 夜夜嗨av一区二区三区免费区| 国产视频一区在线观看一区免费| 久久综合五月| 午夜在线成人av| 一本色道久久精品| 伊人色综合久久天天五月婷| 国产精品va在线播放| 另类综合日韩欧美亚洲| 午夜在线一区| 亚洲视频欧洲视频| 亚洲人成网站影音先锋播放| 国产亚洲欧美日韩精品| 欧美午夜影院| 欧美精品一区二区精品网 | 国产一区二区三区在线观看免费视频| 欧美激情在线观看| 久久综合国产精品| 小嫩嫩精品导航| 亚洲一区二区三区四区中文 | 免费观看成人www动漫视频| 欧美亚洲自偷自偷| 亚洲一区二区不卡免费| 中文网丁香综合网| 亚洲精品一区二区三区99| 在线观看精品一区| 在线观看欧美视频| 精品成人在线观看| 亚洲电影在线看| 伊伊综合在线| 亚洲国产精品传媒在线观看| 狠狠色狠色综合曰曰| 国产亚洲一区二区三区| 国产日韩一区在线| 国产一区二区三区在线免费观看| 国产精品欧美在线| 国产日韩精品视频一区二区三区| 国产精品久久久久999| 国产精品一二三四| 国外成人免费视频| 亚洲国产精品精华液2区45| 亚洲日本免费电影| 亚洲免费av观看| 亚洲综合成人在线| 久久国产一区二区| 毛片一区二区| 欧美另类女人| 国产精品久线观看视频| 国产一区二区精品丝袜| 国际精品欧美精品| 亚洲高清激情| 一区二区三区精品久久久| 欧美亚洲视频| 女生裸体视频一区二区三区| 欧美日韩1080p| 国产麻豆日韩| 亚洲第一偷拍| 亚洲无吗在线| 玖玖精品视频| 亚洲一区影院| 国产精品高清一区二区三区| 国产农村妇女精品| 欧美国产亚洲精品久久久8v|