合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫INFS2044、代做Python設計編程
        代寫INFS2044、代做Python設計編程

        時間:2024-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        INFS2044 Assignment 2 Case Study 
         
        In this assignment, you will be developing a system for finding images based on the objects 
        present in the images. The system will ingest images, detect objects in the images, and 
        retrieve images based on labels associated with objects and by similarity with an example 
        image. 
         
        Use Cases 
         
        The system supports the following use cases: 
         
        • UC1 Ingest Image: User provides an image, and System stores the image, identifies 
        objects in the image, and records the object types detected in the image in an index. 
         
        • UC2 Retrieve Objects by Description: User specifies a list of object types, and the 
        system returns the images in its index that match those listed. The system shall 
        support two matching modes: 
         
        o ALL: an image matches if and only if an object of each specified type is 
        present in the image 
        o SOME: an image matches if an object of at least one specified type is present 
        in the image 
         
        • UC3 Retrieve Similar Images: User provides an image, and the system retrieves the 
        top K most similar images in order of descending similarity. The provided image may 
        or may not already be in the system. The similarity between two images is 
        determined based on the cosine similarity measure between the object types 
        present in each image. The integer K (K>1) specifies the maximum number of images 
        to retrieve. 
         
        • UC4 List Images: System shows each image and the object types associated with 
        each image in the index. 
         
         
         Example Commands 
         
        The following are example commands that the command line frontend of the system shall 
        implement: 
         
        UC1: 
         
        $ python image_search.py add example_images/image1.jpg 
        Detected objects chair,dining table,potted plant 
         
        $ python image_search.py add example_images/image2.jpg 
        Detected objects car,person,truck 
         
        $ python image_search.py add example_images/image3.jpg 
        Detected objects chair,person 
         
        $ python image_search.py add example_images/image4.jpg 
        Detected objects car 
         
        $ python image_search.py add example_images/image5.jpg 
        Detected objects car,person,traffic light 
         
        $ python image_search.py add example_images/image6.jpg 
        Detected objects chair,couch 
         
        UC2: 
         
        $ python image_search.py search --all car person 
        example_images/image2.jpg: car,person,truck 
        example_images/image5.jpg: car,person,traffic light 
        2 matches found. 
         
        $ python image_search.py search --some car person 
        example_images/image2.jpg: car,person,truck 
        example_images/image3.jpg: chair,person 
        example_images/image4.jpg: car 
        example_images/image5.jpg: car,person,traffic light 
        4 matches found. 
         
        UC3: 
         
        $ python image_search.py similar --k 999 example_images/image3.jpg 
        1.0000 example_images/image3.jpg 
        0.5000 example_images/image6.jpg 
        0.4082 example_images/image1.jpg 
        0.4082 example_images/image2.jpg 
        0.4082 example_images/image5.jpg 
        0.0000 example_images/image4.jpg 
         
        $ python image_search.py similar --k 3 example_images/image3.jpg 
        1.0000 example_images/image3.jpg 
        0.5000 example_images/image6.jpg 0.4082 example_images/image1.jpg 
         
        $ python image_search.py similar example_images/image7.jpg 
        0.5774 example_images/image1.jpg 
         
        UC4: 
         
        $ python image_search.py list 
        example_images/image1.jpg: chair,dining table,potted plant 
        example_images/image2.jpg: car,person,truck 
        example_images/image3.jpg: chair,person 
        example_images/image4.jpg: car 
        example_images/image5.jpg: car,person,traffic light 
        example_images/image6.jpg: chair,couch 
        6 images found. 
         
        Other requirements 
         
        Input File Format 
         
        The system shall be able to read and process images in JPEG format. 
         
        For UC2, you can assume that all labels are entered in lowercase, and labels containing 
        spaces are appropriately surrounded by quotes. 
         
        Output Format 
         
        The output of the system shall conform to the format of the example outputs given above. 
         
        Unless indicated otherwise, the output of the system does not need to be sorted. 
         
        For UC3, the output shall be sorted in descending order of similarity. That is, the most 
        similar matching image and its similarity shall be listed first, followed by the next similar 
        image, etc. 
         
        For UC4, the output shall be sorted in ascending alphabetical order. 
         
        Internal Storage 
         
        You are free to choose either a file-based storage mechanism or an SQLite-based database 
        for the implementation of the Index Access component. 
         
        The index shall store the file path to the image, not the image data itself. 
         
        Object detection 
         The supplied code for object detection can detect ~** object types. 
         
        Future variations 
         
        • Other object detection models (including external cloud-based systems) could be 
        implemented. 
        • Additional object types could be introduced. 
        • Additional query types could be introduced. 
        • Other similarity metrics could be implemented. 
        • Other indexing technologies could be leveraged. 
        • Other output formats (for the same information) could be introduced. 
         
        These variations are not in scope for your implementation in this assignment, but your 
        design must be able to accommodate these extensions largely without modifying the code 
        that you have produced. 
         
        Decomposition 
         
        You must use the following component decomposition as the basis for your implementation 
        design: 
         
        The responsibilities of the elements are as follows: 
         
        Elements Responsibilities 
        Console App Front-end, interact with the user 
        Image Search Manager Orchestrates the use case processes 
        Object Detection Engine Detect objects in an image 
        Matching Engine Finds matching images given the object types 
        Index Access Stores and accesses the indexed images 
        Image Access Read images from the file system 
         
        You may introduce additional components in the architecture, provided that you justify why 
        these additional components are required. 
         
         Scope & Constraints 
         
        Your implementation must respect the boundaries defined by the decomposition and 
        include classes for each of the elements in this decomposition. 
         
        The implementation must: 
        • run using Python 3.10 or higher, and 
        • use only the Python 3.10 standard libraries and the packages listed in the 
        requirements.txt files supplied with this case study, and 
        • not rely on any platform-specific features, and 
        • extend the supplied code, and 
        • correctly implement the functions described in this document, and 
        • it must function correctly with any given input files (you can assume that the entire 
        content of the files fits into main memory), and 
        • it must include a comprehensive unit test suite using pytest, and 
        • adhere to the given decomposition and design principles taught in this course. 
         
        Focus your attention on the quality of the code. 
         
        It is not sufficient to merely create a functionally correct program to pass this assignment. 
        The emphasis is on creating a well-structured, modular, object-oriented design that satisfies 
        the design principles and coding practices discussed in this course. 
         
        Implementation Notes 
         
        You can use the code supplied in module object_detector.py to detect objects in 
        images and to encode the tags associated with an image as a Boolean vector (which you will 
        need to compute the cosine similarity). Do not modify this file. 
         
        You can use the function matplotlib.image.imread to load the image data from a file, and 
        sklearn.metrics.pairwise.cosine_similarity to compute the cosine similarity between two 
        vectors representing lists of tags. 
         
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:DSCI 510代寫、代做Python編程語言
      2. 下一篇:代寫FN6806、代做c/c++,Python程序語言
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产成人久久精品麻豆一区| 国产乱码精品一区二区三区四川| 精品一区二区三区在线观看| 久久国产免费一区二区三区| 日韩AV在线不卡一区二区三区 | 激情综合一区二区三区| 无码少妇精品一区二区免费动态| 精品无码人妻一区二区三区品| 国产未成女一区二区三区 | 一区二区亚洲精品精华液| 国产成人一区在线不卡| 色噜噜一区二区三区| 亚洲精品精华液一区二区| 99精品国产一区二区三区2021| 99久久人妻精品免费一区 | 国产一区二区三区电影| 精品人妻AV一区二区三区| 亚洲日本一区二区| 少妇激情AV一区二区三区| 国产精品毛片VA一区二区三区| 精品一区二区三区在线视频| 国产一区二区三区在线观看精品| 精品无码中出一区二区| 国产一区二区三区免费看| 波多野结衣一区二区三区| 91精品福利一区二区| 亚洲av色香蕉一区二区三区蜜桃| 久久久无码精品国产一区| 色噜噜AV亚洲色一区二区| 亚洲一区二区三区偷拍女厕| 日本一区二区在线| 久久久综合亚洲色一区二区三区| 一区二区三区在线播放视频| 亚洲日本一区二区三区在线不卡| 成人免费一区二区三区| 国产精品视频一区二区三区四 | 动漫精品第一区二区三区| 国产福利电影一区二区三区,亚洲国模精品一区 | 国产在线一区二区三区在线| 中文字幕在线一区二区三区| 国产一区二区免费|