99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS2044、代做Python設計編程
代寫INFS2044、代做Python設計編程

時間:2024-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



INFS2044 Assignment 2 Case Study 
 
In this assignment, you will be developing a system for finding images based on the objects 
present in the images. The system will ingest images, detect objects in the images, and 
retrieve images based on labels associated with objects and by similarity with an example 
image. 
 
Use Cases 
 
The system supports the following use cases: 
 
• UC1 Ingest Image: User provides an image, and System stores the image, identifies 
objects in the image, and records the object types detected in the image in an index. 
 
• UC2 Retrieve Objects by Description: User specifies a list of object types, and the 
system returns the images in its index that match those listed. The system shall 
support two matching modes: 
 
o ALL: an image matches if and only if an object of each specified type is 
present in the image 
o SOME: an image matches if an object of at least one specified type is present 
in the image 
 
• UC3 Retrieve Similar Images: User provides an image, and the system retrieves the 
top K most similar images in order of descending similarity. The provided image may 
or may not already be in the system. The similarity between two images is 
determined based on the cosine similarity measure between the object types 
present in each image. The integer K (K>1) specifies the maximum number of images 
to retrieve. 
 
• UC4 List Images: System shows each image and the object types associated with 
each image in the index. 
 
 
 Example Commands 
 
The following are example commands that the command line frontend of the system shall 
implement: 
 
UC1: 
 
$ python image_search.py add example_images/image1.jpg 
Detected objects chair,dining table,potted plant 
 
$ python image_search.py add example_images/image2.jpg 
Detected objects car,person,truck 
 
$ python image_search.py add example_images/image3.jpg 
Detected objects chair,person 
 
$ python image_search.py add example_images/image4.jpg 
Detected objects car 
 
$ python image_search.py add example_images/image5.jpg 
Detected objects car,person,traffic light 
 
$ python image_search.py add example_images/image6.jpg 
Detected objects chair,couch 
 
UC2: 
 
$ python image_search.py search --all car person 
example_images/image2.jpg: car,person,truck 
example_images/image5.jpg: car,person,traffic light 
2 matches found. 
 
$ python image_search.py search --some car person 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
4 matches found. 
 
UC3: 
 
$ python image_search.py similar --k 999 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 
0.4082 example_images/image1.jpg 
0.4082 example_images/image2.jpg 
0.4082 example_images/image5.jpg 
0.0000 example_images/image4.jpg 
 
$ python image_search.py similar --k 3 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 0.4082 example_images/image1.jpg 
 
$ python image_search.py similar example_images/image7.jpg 
0.5774 example_images/image1.jpg 
 
UC4: 
 
$ python image_search.py list 
example_images/image1.jpg: chair,dining table,potted plant 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
example_images/image6.jpg: chair,couch 
6 images found. 
 
Other requirements 
 
Input File Format 
 
The system shall be able to read and process images in JPEG format. 
 
For UC2, you can assume that all labels are entered in lowercase, and labels containing 
spaces are appropriately surrounded by quotes. 
 
Output Format 
 
The output of the system shall conform to the format of the example outputs given above. 
 
Unless indicated otherwise, the output of the system does not need to be sorted. 
 
For UC3, the output shall be sorted in descending order of similarity. That is, the most 
similar matching image and its similarity shall be listed first, followed by the next similar 
image, etc. 
 
For UC4, the output shall be sorted in ascending alphabetical order. 
 
Internal Storage 
 
You are free to choose either a file-based storage mechanism or an SQLite-based database 
for the implementation of the Index Access component. 
 
The index shall store the file path to the image, not the image data itself. 
 
Object detection 
 The supplied code for object detection can detect ~** object types. 
 
Future variations 
 
• Other object detection models (including external cloud-based systems) could be 
implemented. 
• Additional object types could be introduced. 
• Additional query types could be introduced. 
• Other similarity metrics could be implemented. 
• Other indexing technologies could be leveraged. 
• Other output formats (for the same information) could be introduced. 
 
These variations are not in scope for your implementation in this assignment, but your 
design must be able to accommodate these extensions largely without modifying the code 
that you have produced. 
 
Decomposition 
 
You must use the following component decomposition as the basis for your implementation 
design: 
 
The responsibilities of the elements are as follows: 
 
Elements Responsibilities 
Console App Front-end, interact with the user 
Image Search Manager Orchestrates the use case processes 
Object Detection Engine Detect objects in an image 
Matching Engine Finds matching images given the object types 
Index Access Stores and accesses the indexed images 
Image Access Read images from the file system 
 
You may introduce additional components in the architecture, provided that you justify why 
these additional components are required. 
 
 Scope & Constraints 
 
Your implementation must respect the boundaries defined by the decomposition and 
include classes for each of the elements in this decomposition. 
 
The implementation must: 
• run using Python 3.10 or higher, and 
• use only the Python 3.10 standard libraries and the packages listed in the 
requirements.txt files supplied with this case study, and 
• not rely on any platform-specific features, and 
• extend the supplied code, and 
• correctly implement the functions described in this document, and 
• it must function correctly with any given input files (you can assume that the entire 
content of the files fits into main memory), and 
• it must include a comprehensive unit test suite using pytest, and 
• adhere to the given decomposition and design principles taught in this course. 
 
Focus your attention on the quality of the code. 
 
It is not sufficient to merely create a functionally correct program to pass this assignment. 
The emphasis is on creating a well-structured, modular, object-oriented design that satisfies 
the design principles and coding practices discussed in this course. 
 
Implementation Notes 
 
You can use the code supplied in module object_detector.py to detect objects in 
images and to encode the tags associated with an image as a Boolean vector (which you will 
need to compute the cosine similarity). Do not modify this file. 
 
You can use the function matplotlib.image.imread to load the image data from a file, and 
sklearn.metrics.pairwise.cosine_similarity to compute the cosine similarity between two 
vectors representing lists of tags. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:DSCI 510代寫、代做Python編程語言
  • 下一篇:代寫FN6806、代做c/c++,Python程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产三级精品视频| 日韩精品在线看片z| 亚洲欧美国产77777| 91精品中文字幕一区二区三区| 国产精品一区二区久久不卡| 91精品国产欧美日韩| 色悠久久久久综合欧美99| 日韩有码一区二区三区| 五月婷婷激情综合| 亚洲美女视频在线| 国产精品美女久久久久久久久| 精品1区2区在线观看| 日本乱人伦一区| 成av人片一区二区| 成人一区二区在线观看| 国产黄色成人av| 日韩国产一二三区| 亚洲视频在线一区| 精品国产一区二区精华| 欧美日韩三级在线| 欧美日韩午夜在线| 欧美系列在线观看| 一本久久精品一区二区| www.欧美色图| 91美女蜜桃在线| 一区二区三区四区乱视频| 亚洲色图视频网| 亚洲激情一二三区| 日本一区二区成人| 国产精品美女视频| 18成人在线视频| 日韩二区在线观看| 免费人成在线不卡| 成人国产在线观看| 91天堂素人约啪| 欧美日韩国产综合一区二区 | 亚洲欧美日韩国产成人精品影院| 欧美高清在线视频| 国产精品免费人成网站| 亚洲在线视频网站| 日韩精品乱码av一区二区| 国产一区二区在线观看免费| 国产一区二区三区免费观看| 国产精品亚洲一区二区三区妖精| 不卡电影一区二区三区| 91国产免费观看| 337p日本欧洲亚洲大胆色噜噜| 欧美国产日产图区| 精品三级在线看| 亚洲激情校园春色| 免费观看一级特黄欧美大片| 丁香婷婷综合色啪| 91美女在线视频| 久久新电视剧免费观看| 国产欧美一区二区三区在线看蜜臀| 一区二区三区日韩在线观看| 日韩黄色免费网站| 91一区二区三区在线观看| 成人av在线资源| 91精品国产黑色紧身裤美女| 1024精品合集| 日韩高清不卡一区二区三区| 国产一区二区三区综合| 99久久婷婷国产综合精品| 精品精品国产高清一毛片一天堂| 国产精品久久久久久久第一福利| 麻豆精品久久精品色综合| 成人av综合在线| 黑人巨大精品欧美一区| 欧美麻豆精品久久久久久| 久久久久国产免费免费| 日韩国产成人精品| 972aa.com艺术欧美| 欧美国产激情二区三区| 免费在线欧美视频| 国产精品自拍在线| 久久久久久久网| 丝袜亚洲另类欧美| 欧美美女一区二区三区| 亚洲欧洲美洲综合色网| 国产91丝袜在线18| 欧美成人性战久久| 美女精品自拍一二三四| 欧美日韩久久久久久| 成人国产电影网| 久久久亚洲精品石原莉奈| 丝瓜av网站精品一区二区| 欧美日韩精品欧美日韩精品一| 国产精品国产三级国产普通话三级| 国产精品乡下勾搭老头1| 欧美一级高清大全免费观看| 水蜜桃久久夜色精品一区的特点| 欧美无砖砖区免费| 爽爽淫人综合网网站| 欧美日韩一级视频| www激情久久| 高清视频一区二区| 精品欧美一区二区久久| 国产综合一区二区| 久久综合狠狠综合| 成人一级黄色片| 国产精品久久久久影院老司| 99综合影院在线| 亚洲欧美日韩电影| 国产精品国产精品国产专区不片| 国产另类ts人妖一区二区| 精品美女一区二区| 成人a免费在线看| 亚洲女人****多毛耸耸8| 欧美日韩国产美女| 日韩在线观看一区二区| 久久美女艺术照精彩视频福利播放| 狠狠色狠狠色综合| 国产精品不卡在线| 在线观看亚洲精品视频| 亚洲第一二三四区| 欧美精品乱人伦久久久久久| 一区二区三区在线高清| 成人av网站大全| 亚洲裸体xxx| 欧美日韩一级片网站| 美女视频一区二区三区| 久久日韩精品一区二区五区| 国产成人8x视频一区二区| 中文av一区二区| 在线亚洲+欧美+日本专区| 精品国内片67194| yourporn久久国产精品| 久久天天做天天爱综合色| 99这里都是精品| 国产精品久久久久久妇女6080 | 亚洲精品久久7777| 久久精品72免费观看| 精品国产不卡一区二区三区| av一本久道久久综合久久鬼色| 一区二区三区电影在线播| 99热在这里有精品免费| 日本午夜精品视频在线观看| 国产精品国产三级国产aⅴ原创| 欧美日韩国产免费一区二区| 91小视频免费看| 蜜臀99久久精品久久久久久软件| 亚洲色图都市小说| 欧美一级久久久| 自拍偷拍亚洲激情| 日韩欧美中文字幕精品| 九色porny丨国产精品| 亚洲永久精品大片| 欧美极品xxx| 精品福利一二区| 欧美日韩中文字幕一区二区| 99久久99久久久精品齐齐| 秋霞影院一区二区| 亚洲成人资源网| 国产精品每日更新在线播放网址| 日韩欧美一区二区三区在线| 一道本成人在线| 色综合久久综合网97色综合| 精品一区二区影视| 美女视频一区二区| 亚洲风情在线资源站| 亚洲人成人一区二区在线观看| 欧美电影精品一区二区| 91精品国产aⅴ一区二区| 色哟哟国产精品免费观看| 91丝袜美女网| 99久久久久免费精品国产| 粉嫩aⅴ一区二区三区四区五区| 麻豆成人91精品二区三区| 麻豆国产91在线播放| 三级欧美在线一区| 欧美视频中文字幕| 日本久久精品电影| 欧美影院一区二区| 成人av网站在线| 精品一区二区三区影院在线午夜| 青青草国产精品亚洲专区无| 亚洲一区二区偷拍精品| 亚洲综合免费观看高清在线观看| 91在线精品一区二区三区| 成人午夜激情片| 亚洲精品伦理在线| 天堂va蜜桃一区二区三区漫画版| 久久精品夜夜夜夜久久| 中文字幕欧美一| 国产精品久久久久天堂| 尤物在线观看一区| 国产精品久久久久久妇女6080 | 欧美一区二区三区四区五区| 91国偷自产一区二区三区成为亚洲经典 | 欧美日韩国产小视频在线观看| 99久久久无码国产精品| 色综合天天天天做夜夜夜夜做| 成人h精品动漫一区二区三区| 狠狠色狠狠色综合日日91app| 国产成人免费高清| 日本伊人色综合网| 成人av在线播放网站| 这里只有精品免费| 欧美v日韩v国产v|