99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫XJEL1703、MATLAB設計編程代做
代寫XJEL1703、MATLAB設計編程代做

時間:2024-12-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



XJEL1703 – Algorithms and 
Numerical Mathematics Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
School of Electronic & 
Electrical Engineering 
FACULTY OF ENGINEERING 
  
Page 2 of 12 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
Report format 
This assignment is split into 5 parts, questions are shaded blue, while examples (if provided) are shaded grey. 
This assignment carries 70% of your total mark on the module and you need to score at least 30% on this 
assignment in order to pass the module, regardless of your score on the previous two assignments. 
- Answer all the questions in separate document (your report), include your name and student number. 
- Make your report as organized as you can (e.g use tables for short questions, different colours, fonts 
etc.). 
- For questions where you do something in MATLAB command line you must copy-paste input/output 
from MATLAB to your report – you can do this directly (copy-paste) or take a print screen and paste 
a picture. 
- For questions which require you to write a code you should take a photo (snipping tool or print screen) 
of your code in the report (or copy paste it) and also upload corresponding .m file along your report. 
Also add comments into codes (using MATLAB symbol % ) and explain what lines in your code do in 
the report. 
- You should also add comments explaining what you did and notify anything you found peculiar in 
MATLAB (and give an opinion why that happened). 
 
Contents 
Roots Finding Algorithms ...................................................................................................................................... 5 
Question 1. (15 marks) ....................................................................................................................................... 6 
Question 2. (25 marks) ....................................................................................................................................... 6 
Function fitting - linear and nonlinear regression .................................................................................................. 8 
Question 3. (10 marks) ....................................................................................................................................... 8 
Interpolation ........................................................................................................................................................... 9 
Question 4. (20 marks) ....................................................................................................................................... 9 
Optimising Voltage Stability and Energy Management in a Smart Grid: A MATLAB-Based Analysis ........ 10 
Question 5. (30 marks) ..................................................................................................................................... 10 
  
Page 3 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
Assignment hints 
 
This assignment primarily focuses on testing your analytic skills. In the previous assignment you learned how 
to make functions, vary parameters in them and display and analyse your results. 
In this assignment you will also be required to write codes which vary different input parameters of functions 
that we will provide and analyse effect of those parameters, thus your comments are primarily marked. 
 
Generally, there are three types of comments you could make: 
 
 1. Code comments – these comments should be present in the codes itself explaining what particular 
lines do, and you should also provide a sentence or two explaining the entire algorithm and your code 
structure in the report. 
 
2. Observatory comments – these comments describe what you can observe from your results. They are 
typically not worth many marks, but are a necessary part of your work. For instance in Assignment 1, 
you might’ve commented on graph error vs terms: “The numerical error flattens for 20-30 terms in the 
expansion when x is fixed to 5” or “fzero is MATLAB’s function that finds a root of a function that is 
closest to the initial guess” 
 
 3. Explanatory comments – these comments explain your results, most likely after some observation. 
They are worth the most marks. Anyone can observe some peculiarity on a graph, but can you explain 
it? For example in Assignment 1, an explanatory comment would be: “Numerical error decreases with 
number of terms, however it displays saturation effect when error reaches the scale of 1e-16. This 
saturation effect is purely of numerical nature as 1e-16 is the smallest number MATLAB can represent 
by the default data type we are using, while theoretically the error should still be decreasing with 
addition of more terms in the Maclaurin expansion”. 
 
It is important to have sense of displaying your data. Matlab’s plot function links data points (x,y) linearly, so if 
you have a lot of points, your graph would be smooth, you can use stem function to display points only 
(without linking them linearly) which is recommended if your data has only few points. Matlab has various 
plotting function along with plot, and the important ones are loglog, semilogx and semilogy which scale one 
of the axes or both of them logarithmically. These plotting functions are useful when your inputs are not 
equidistant, and have rapidly increasing or decreasing values (for instance powers of 10). In the following 
questions you will be instructed when to use a specific plot function, however you may, for your own merit, try 
using plot in order to see the difference, and more importantly to check whether you can derive same 
conclusions as in logarithmic plot. 
Note that even though you are allowed to copy-paste specific functions from the notes and use them, you still 
need to include them in your report and Minerva submission. 
  
Page 4 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
The following example illustrates analysis of function with multiple inputs. Imagine you were provided with a 
function that evaluates exponential of x, with specified tolerance tol, the function also returns number of 
iterations needed to satisfy the tolerance tol. Analysis of such function would require you to do the following: 
%Analysis of x 
x=linspace(0,10); % needs to be varied 
tol=1e-6; % needs to be fixed 
for i=1:length(x) 
 [y_x(i) itt_x(i)]=custom_exp_fun(x(i),tol); 
end 
error_x=abs(y_x-exp(x)); % you should have something to compare with 
 
%Analysis of tolerance 
x_fixed=5; % needs to be fixed 
tolerance=10.^(-16:-1); % needs to be varied 
for i=1:length(tolerance) 
 [y_tol(i) itt_tol(i)]=custom_exp_fun(x_fixed,tolerance(i)); 
end 
error_tol=abs(y_tol-exp(x)); 
 
The next step would be plotting these results. Plots (x,error_x) and (x,itt_x) should be done with plot or 
semilogy function while plots (tolerance,error_tol) and (itt_tol,error_tol) should be plotted with semilogx or 
loglog function since the x-axis in the plot is logarithmic, and y-axis is error which is usually very small. 
Note that analysis of different inputs should ideally be in different .m files. In the assignment you will always be 
asked to do it separately. If, in future, you are required to the similar analysis in different type of problem, make 
sure that you do not overwrite variables used in previous variation of input parameters (make sure your main 
code always clears the memory). 
Some of the functions you are provided for this assignment request function input in order to work properly, 
namely zero finding functions and interpolation functions. You may have noticed how to do that in the previous 
assignments by making a function file, however Matlab has a neat trick how to construct an inline function 
handler: 
 
F=@(x) x.^2 – 5*x + 5; % this is a function of x, where x is symbolic 
x=linspace(-10,10); % this is x – axis, it did not overwrite x in the previous 
 function! 
y=F(x); % this will place array x into your function and evaluate 
plot(x,y); % this will plot function F for input x 
fzero(F,5); % you may call other function that needs function input 
Construct @(x) means function of “x”, this approach is equivalent to making the function F in separate .m file 
and it is clearly very convenient when your function is arithmetical. 
The greatest advantage of this trick is that you can use it to make functions out of other functions neatly. In 
many practical cases you will be provided with raw (x,y) data that you may need to interpolate and then do  
Page 5 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
some analysis (root finding, differentiation etc.). Interpolation functions usually require you to supply data and 
a variable/array for which you want to find an estimate. Naturally return value is another variable/array which 
you cannot use as an input to root finding function. Trick is to call interpolation function for a symbolic variable 
and make its output as a function of it: 
x_data=[-5 -4 -3 0 50 51 68 98]; % raw x data 
y_data=[-5, -3, -0.5, 3, 8, -5, 10 20]; % raw y data 
New_function = @(x) interp1(x_data,y_data,x,’cubic’); % this creates an 
 % interpolation function 
x_array=-5:100; % create interpolating array with better spacing 
y_array= New_function(x_array); % interpolation of y_data on x_array 
plot(x_array,y_array) % plot of interpolated data 
z1=fzero(New_function,5); % New_funciton is a function so fzero can be called 
z2=fzero(New_function,80); % Find the second zero 
If you interpolated your data directly as y_array2=interp1(x_data,y_data,x_array) you would be able to plot it, 
however you could not use fzero function on it, because y_array2 is an array, and fzero needs a function as an 
input. 
 
 
 
Roots Finding Algorithms 
The root finding algorithms covered in lectures 2 and 3 are numerical methods for finding a value x such that 
f(x) = 0 for a given function f(x). These values of x are described as roots of the function f. 
 
These methods can generally be broken down into bracketing methods, open methods, and combinations of 
these. Bracketing methods such as the bisection method require two initial conditions on either side of the root 
of a continuous function such that they have opposite signs. The interval is then repeatedly bisected until the 
root is found within some tolerance. False position bracketing method determines the next guess not by 
splitting the bracket in half but by connecting the endpoints with a straight line and determining the location of 
the intercept of the straight line. 
Open methods such as Newton’s method or the secant method do not require a defined interval and iteratively 
calculate the derivative of the function to find the root. 
 
In this assignment you will apply various algorithms to polynomial functions to calculate their roots. 
  
Page 6 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
Question 1. (15 marks) 
1.1. Using the code for the bisection method provided in Lecture 2 calculate the real roots 
of the function f(x) = x4
 -2x - 2 using 5 iterations. To determine the intervals where the 
function changes sign use the graphical method. Discuss interval width and number of 
iterations. 
 (5 marks) 
 
1.2. Modify your bisection method code so that the program finds the roots of the function 
given in 1.1 to an error value less than the provided parameter named tolerance and 
returns the number of bisection iterations necessary for convergence. 
 The modification requires you to set number of iterations as an output of your function, 
 and tolerance as an input. Check the code for false position method function in Lecture 
 2 notes which is already written in such format. 
 Write a main code where you: 
 - Test your modified function for w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5; = 10−6 and find all roots of f(x) 
 - Focus on one of the roots and plot number of iterations vs range of tolerance values 
 with bisection method 
 - Focus on one of the roots and plot number of iterations vs range of tolerance values 
 with false position method 
 Comment on your observation and analyse the effect of tolerance on both functions. 
 Hint: For making the graphs, you need to call your function for multiple values of 
 tolerance input. Doing this automatically (via for or while loop) is strongly 
 preferred. To create an array of tolerance values you may use this: 
 w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5; = 10. ^(−16: −1) . This code creates array consisting of 
 10−16, 10−15 … 10−1 . You may also try different range as 10. ^(−20: −1) to 
 check what happens for very strict tolerance. 
 Note: Instead of saving f(x) as an inline function as suggested in the notes, you may 
 also use function handlers in MATLAB. You may define f(x) at the start of your 
 main code as:     = @(    )     4 − 2 ∗      − 2. The symbol @ is called handler, (x) 
 means ‘function of x’. 
 
 (10 marks) 
 
Question 2. (25 marks) 
 
2.1. Plot the function f(x) = x4
 – 2x2
 + x between -2 and 2. How many roots does this 
function have? Find these roots using MATLAB roots built-in program (use command 
help roots in the command window to learn more about MATLAB roots program). 
 
(2 marks) 
  
Page 7 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
2.2. Read about Matlab built-in fzero program (use command help fzero in the 
command window, material from Lecture 3 notes and/or on internet). Test the Matlab 
program fzero finding real roots of f(x) = x4
 – 2x2
 + x. 
 
(3 marks) 
 
2.3. Review Newton’s method function code from the lab notes. Focus on mynewtontol 
function specifically and write a MATLAB code that finds all roots of the given function 
automatically. In order to do this you need to make array for the x-axis and send each 
point of x(i) as initial guess to mynewtontol function, your output (the roots) will also be 
an array. Use tolerance of 1×10-6

 
 - Use your code to find the roots of the function f(x) = x4
 - 2x - 2. Plot the function for 
visual check of your code. What do you notice about the output of your code? Why do 
you have repetitive roots? Check MATLAB’s round and unique function and combine 
them in order to filter repetitive values. What are the issues with this filtration? 
 
- In order to avoid repetition of the roots, modify your code so that you send initial 
guess only when your function changes sign doing, therefore, the incremental search 
algorithm and rerun your code. What do you notice now about the output of your code? 
 
- Furthermore test your code for the function f(x) = x2
 - 2x +1. Plot the function to 
check where the root is. 
 
- Discuss incremental search and bracketing procedure and what are potential 
problems. Illustrate potential incremental search hazards plotting in MATLAB different 
functions of your choice. 
 
(10 marks) 
 
2.4. Write a MATLAB program that determines how many iterations Newton’s method takes 
to have the tolerance 1×10-6
 with various initial values for the root x0. You will need to 
make x-axis array, send it to mynewtontol function and output number of iterations for 
every guess x(i). 
 
- Test your code for the function f(x) = x4
 - 2x - 2 and plot number of iterations needed 
for different guesses. What do you notice? 
 
- Review the theory of Newton’s method and plot f(x) / f’(x). Compare this figure with 
your iterations figure, what do you notice? Can you explain why this happened? 
 
- Test your code for the function f(x) = x2
 - 2x +1 and repeat the procedure you did with 
the previous function. What do you notice now? Formulate mathematical condition 
when the issue you noticed with the first function occurs. 
Page 8 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
2.5. Write a MATLAB program that determines how many iterations Newton’s method takes 
to satisfy various tolerances tol. In this task tolerance needs to be an array (for 
example from 1 to 1×10-16), while initial guess is fixed. Do this also with bisection 
function code which you used in Assignment 2. 
 - Run your code for the function f(x) = x4
 - 2x – 2, use x0 = 1 as initial guess in 
Newton’s method, for bisection method choose interval [1 3]. Plot (use semilogx 
function) number of iterations needed for different tolerances obtained from both 
methods on the same graph. What do you notice? 
 
 (3 marks) 
 
Function fitting - linear and nonlinear regression 
 
Determining the relationship between variables involved in a process is often an important part of engineering. 
If an engineer is required to develop an understanding of underlying mechanisms or is attempting to optimise a 
device, it is useful to establish how one characteristic depends on something else such as time. 
A mathematical expression that describes the experimental data is called an approximating function. There are 
two approaches to determining an approximating function: 
 
 - The approximating function graphs as a smooth curve. In this case, the plotted curve will generally not 
pass through all the data points, but we seek to minimize the resulting error to get the best fit. A plot of 
the data on linear, semilog, or log-log coordinates can often suggest an appropriate form for the 
approximating function. 
 
- The approximating function passes through all data points. However, if there is some scatter in the 
data points, this approximating function may not be satisfactory. 
 
 
Question 3. (10 marks) 
3.1. Given that (x,y) = (-15,-980), (-8,-620), (-6,-70), (-4,80), (-2,100), (0,**), (2,0), (4,-80), 
(6,-**), (8,10), (10,225), use linear least-squares regression curve fitting approach to fit 
a line y = a0 +a1x to this data and find coefficients a0 and a1 by using mylinregr from 
your notes. Plot (use stem function) original data y(x) and the linear fit (use plot 
function) on the same graph and discuss the accuracy of the linear fit. 
 
 (5 marks) 
3.2. Repeat the curve fitting procedure as in 3.1. to find the best fit to polynomials of third, 
fourth and fifth degrees using MATLAB built-in polyfit function (check polyval as well). 
Plot the raw data and curves fit (on the same graph) and discuss the accuracy of each 
polynomial fit. 
 
 (5 marks)  
Page 9 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
Interpolation 
Question 4. (20 marks) 
 
4.1. The population of a region between 1920 and 2000 is given in the table below. Using 
Lagrange interpolation technique, determine the population in 1925. What would be the 
difference between population in 1945 determined by Lagrange interpolation and 
estimated by linear regression? Plot the data (stem plot), Lagrange interpolation 
function and linear regression line on the same graph. Estimate what the population will 
be in 2015 by Lagrange method. Is your answer reasonable? Outline the potential 
hazards of extrapolation. 
(10 marks) 
Year Population 
(millions) 
1920 105 
1930 120 
1940 130 
1950 150 
1960 180 
1970 205 
1980 225 
19** 250 
2000 280 
 
 4.2. Using inverse interpolation technique based on the Lagrange interpolation and a 
method for root finding by your choice (check assignment 2 for bisection, fzero or use 
Newton’s method that is in question 3 of this assignment): 
a) Determine year and month when the population of the region was exactly 210 million. 
Plot inverse interpolation function for different years. 
 
Hint: You want to find zero of function lagrange(x_data,y_data,x)-210, check out the hint 
prior to question one. 
 
b) Determine years (and the corresponding populations) when Lagrange interpolation and 
quadratic regression will anticipate same populations. Plot inverse interpolation function 
for different years. 
(10 marks) 
 
 
 
 
 
  
Page 10 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
Optimising Voltage Stability and Energy Management in a Smart Grid: A 
MATLAB-Based Analysis 
Question 5. (30 marks) 
An urban smart grid provides power under variable load conditions, affecting voltage stability. Voltage 
fluctuations impact sensitive electronics and increase wear on infrastructure. Engineers need robust methods 
for forecasting voltage trends, identifying critical thresholds, and optimising control settings. 
 
 Below is voltage data recorded hourly over 24 hours under varying load demands: 
 
Time (hours) Voltage (V) 
0 230 
1 225 
2 220 
3 218 
4 215 
5 210 
6 205 
7 208 
8 212 
9 217 
10 222 
11 227 
12 230 
13 235 
14 240 
15 238 
16 234 
17 230 
18 228 
19 226 
20 224 
21 223 
22 221 
23 220 
24 218 
 
 
Task 1: Polynomial Regression and Signal Smoothing (10 marks) 
1. Polynomial Regression: Fit polynomial regression models of the 3rd, 4th, and 5th degrees to the 
voltage data using MATLAB’s polyfit and polyval functions. Plot each polynomial fit with the original 
data to determine which model best represents voltage trends over time. 
Plot: Original voltage data (scatter or stem plot) and polynomial regression curves (3rd, 4th, and 5th 
degree) on the same graph.  
Page 11 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
2. Residual Analysis: Calculate and plot the residuals (errors) for each polynomial fit to analyse which 
degree most accurately captures voltage variations. Identify which model most effectively handles 
fluctuations and discuss the potential effects of overfitting. 
 
Plot: Separate plot showing residuals for each polynomial degree (3rd, 4th, and 5th) against time. 
 
3. Control System Smoothing: For the best-fitting polynomial, use it to predict voltage values at halfhour
intervals (e.g., 0.5, 1.5, etc.). Comment on how this finer resolution could improve real-time control 
system decisions for grid stability. 
 
Plot: Plot the best-fitting polynomial regression model at half-hour intervals (a smoothed version of the 
voltage curve). 
 
Task 2: Root Finding and Threshold-Based Voltage Control (10 marks) 
 
1. Threshold Root Finding: Set a critical voltage threshold at 215 V, below which the grid’s stability is 
compromised. Using root-finding methods (bisection and false position), determine the precise times 
when the voltage crosses this threshold. 
 
Plot: Original voltage data with a horizontal line at the critical threshold of 215 V. Mark points where the 
voltage crosses this threshold were found using root-finding methods. 
 
2. Tolerance vs. Iterations Analysis: For both the bisection and false position methods, vary the 
tolerance levels and plot the number of iterations required to converge. Use a logarithmic scale for 
tolerance to analyse convergence behaviour. Discuss which method achieves faster convergence and 
is more suitable for grid control applications. 
 
Plot: Logarithmic plot (semiology) showing tolerance values on the x-axis and the number of iterations 
on the y-axis for both the bisection and false position methods. 
 
3. Adaptive Control Recommendation: Based on your findings, propose an optimal tolerance setting 
and identify the most suitable root-finding method for real-time grid monitoring. Explain how these 
recommendations would improve grid reliability. 
 
Plot: Summary plot showing the times when voltage crossed the threshold for various tolerances to 
support control system recommendations. 
 
Task 3: Energy Estimation and Power Quality Integration (10 marks) 
 
1. Numerical Integration for Energy: Calculate the total energy supplied by the grid over 24 hours by 
integrating the voltage data with the trapezoidal rule. Vary the segment count from 1 to 50 and plot the 
integration error versus the number of segments to identify when the integration error stabilises. 
 
Plot: Semilogarithmic plot showing the number of segments on the x-axis and the integration error on 
the y-axis. 
 
2. Romberg Integration Comparison: Apply Romberg integration for the same calculation, varying the 
tolerance levels to 1×10−6, 1×10−8, and 1×10−10. Plot the number of iterations for each tolerance and 
compare efficiency with the trapezoidal rule.  
Page 12 of 12 
Dr D Indjin and Dr A. Demic 
XJEL1703 – Algorithms and Numerical Mathematics 
Roots Finding, Linear and Polynomial Regression, Interpolation, Integration – Assignment 2 
 
Plot: Semilogarithmic plot showing tolerance on the x-axis and the number of Romberg iterations 
required for each tolerance. 
 
3. Optimal Integration Method for Power Quality Monitoring: The most effective integration technique 
for continuous power quality monitoring in the grid is recommended based on error analysis and 
efficiency. Discuss how this could impact long-term energy management and infrastructure reliability. 
 
Plot: Comparative plot (semiology) of the trapezoidal and Romberg integration methods, showing 
integration error or iterations needed for each tolerance level. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:CS-350代寫、C++編程語言代做
  • 下一篇:菲律賓13A簽證要怎么申請下來(材料有哪些)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产一区二区三区电影在线观看| 亚洲综合在线第一页| 国产欧美一区二区精品性色超碰| 国产精品乱码一区二三区小蝌蚪| 国产乱码字幕精品高清av| 日韩女优毛片在线| 国产精品69久久久久水密桃| 国产精品麻豆视频| 欧美三级一区二区| 美腿丝袜在线亚洲一区| 中文字幕一区二区三区不卡在线| 亚洲成人免费视| 久久精品免费在线观看| 欧美精品1区2区| 国产精品家庭影院| 欧美日韩免费不卡视频一区二区三区| 美日韩一区二区| 亚洲乱码国产乱码精品精小说| 欧美日韩国产小视频在线观看| 亚洲动漫第一页| 国产精品久久久久四虎| 日韩视频中午一区| 欧美日韩日日骚| 99久久精品一区| 国产一区二区免费视频| 亚洲成人免费在线观看| 亚洲欧美偷拍三级| 国产三级欧美三级日产三级99| 91精品国产一区二区三区香蕉| 蜜桃视频一区二区三区| 欧美不卡一区二区| 色婷婷国产精品| 狠狠色狠狠色综合日日91app| 亚洲男帅同性gay1069| 久久久一区二区三区| 精品国产乱码久久久久久久| 91精品国产综合久久精品麻豆| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 成人性生交大片免费看视频在线 | 亚洲国产高清不卡| 久久久精品国产免大香伊| 欧美极品少妇xxxxⅹ高跟鞋| 国产欧美精品一区二区三区四区 | 亚洲一级二级在线| 九色综合狠狠综合久久| 精久久久久久久久久久| 国产精品88888| 91在线免费视频观看| 日本韩国精品在线| 欧美mv日韩mv| 亚洲精品一二三区| 全部av―极品视觉盛宴亚洲| 国产一区二区按摩在线观看| 91在线小视频| 91精品国产色综合久久不卡蜜臀| 日韩欧美色电影| 亚洲视频狠狠干| 激情综合色播五月| jizz一区二区| 91麻豆精品国产91久久久资源速度| 日本高清不卡视频| 亚洲v中文字幕| 日韩美女精品在线| 日韩精品五月天| 成人精品国产福利| 日韩一区和二区| 亚洲乱码精品一二三四区日韩在线| 亚洲.国产.中文慕字在线| 国产综合一区二区| 538在线一区二区精品国产| 久久精品欧美日韩精品| 青椒成人免费视频| 91麻豆高清视频| 久久久精品日韩欧美| 麻豆国产欧美一区二区三区| 91福利在线导航| 中文字幕亚洲精品在线观看| 成人免费黄色在线| 国产精品嫩草影院com| 大桥未久av一区二区三区中文| 91精品一区二区三区久久久久久| 一区二区三区日韩| 91影院在线免费观看| 国产精品不卡在线观看| 成人午夜激情视频| 国产精品久久国产精麻豆99网站| 国产精品伊人色| 国产精品免费av| 91久久国产综合久久| 日韩激情视频在线观看| 日韩欧美在线观看一区二区三区| 亚洲 欧美综合在线网络| 精品久久久久久最新网址| 国产成人在线色| 一区二区三区四区乱视频| 在线看国产日韩| 韩国三级电影一区二区| 自拍偷拍亚洲综合| 日韩三级免费观看| 亚洲电影一级片| 国产亚洲一区二区在线观看| 95精品视频在线| 日本欧美肥老太交大片| 日韩精品一区二区三区三区免费| 国产不卡在线视频| 日韩高清一级片| 亚洲免费在线电影| 国产亚洲精品精华液| 在线成人小视频| 一本到一区二区三区| 国内成+人亚洲+欧美+综合在线| 亚洲欧美日韩国产一区二区三区| 精品国产一区二区在线观看| 欧美性视频一区二区三区| 99久久免费视频.com| 久久成人免费日本黄色| 亚洲777理论| 亚洲国产wwwccc36天堂| 亚洲激情综合网| 亚洲欧美视频在线观看视频| 国产欧美一区二区三区在线看蜜臀| 91精品国产色综合久久ai换脸| 91美女片黄在线| 91九色最新地址| 欧美亚日韩国产aⅴ精品中极品| 99久久综合99久久综合网站| 日韩和欧美一区二区三区| 中文字幕亚洲电影| 日韩午夜电影在线观看| 色噜噜夜夜夜综合网| 91黄色免费观看| 91福利在线看| 在线观看国产91| 精品一区二区三区影院在线午夜| 色哟哟日韩精品| 国产丶欧美丶日本不卡视频| 美女精品一区二区| 麻豆视频一区二区| 激情成人午夜视频| 岛国一区二区三区| 成人高清视频在线| 99精品欧美一区| 色欧美日韩亚洲| 欧美xxxxxxxx| 精品免费国产一区二区三区四区| 制服.丝袜.亚洲.另类.中文| 26uuu久久天堂性欧美| 亚洲天堂久久久久久久| 亚洲bt欧美bt精品| 激情综合五月婷婷| 久久99国产精品尤物| 激情文学综合网| 成人少妇影院yyyy| 欧美揉bbbbb揉bbbbb| 3atv在线一区二区三区| 欧美日韩成人激情| 久久精品人人做人人爽97| 国产女同性恋一区二区| 一区二区三区国产豹纹内裤在线| 日韩精品1区2区3区| 成人激情av网| 日韩小视频在线观看专区| 久久久久久久性| 性做久久久久久久免费看| 国产98色在线|日韩| 久久久久高清精品| 天天综合日日夜夜精品| 国产真实乱偷精品视频免| 欧美日韩成人综合| 国产欧美精品区一区二区三区| 国产精品女上位| 极品少妇一区二区| 91精品综合久久久久久| 亚洲国产精品精华液网站 | 99re热视频精品| 国产亚洲精品aa午夜观看| 国产成人精品影院| 自拍偷拍国产精品| 色狠狠桃花综合| 天天亚洲美女在线视频| 久久久不卡网国产精品二区| 国内偷窥港台综合视频在线播放| 日韩欧美成人激情| 久久成人羞羞网站| 日韩美女久久久| 欧美一区二区三区日韩| 欧美xxxx在线观看| 亚洲国产精品精华液ab| 亚洲国产视频直播| 欧美一级日韩不卡播放免费| 日本午夜一本久久久综合| 精品处破学生在线二十三| 日日夜夜免费精品| 国产精品久久午夜夜伦鲁鲁| aa级大片欧美| 首页欧美精品中文字幕| 久久久久久久久久美女| 欧美写真视频网站| 成人综合婷婷国产精品久久 | 青娱乐精品视频在线|