99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

PHYS 410代寫(xiě)、代做MATLAB程序設(shè)計(jì)
PHYS 410代寫(xiě)、代做MATLAB程序設(shè)計(jì)

時(shí)間:2024-12-05  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



PHYS 410: Computational Physics Fall 2024
Project 2—The Time Dependent Schro¨dinger Equation
Due: Monday, December 2, 11:59 PM
1. Problem 1
1.1 Introduction
In this part of the project you will solve the one-dimensional time-dependent Schr¨odinger equation using the method
discussed in the lecture, which will be summarized here.
The continuum equation is (after non-dimensionalization)
iψ(x,t)t = −ψxx + V (x,t)ψ , (1)
where the wavefunction, ψ(x,t), is complex. The equation is to be solved on the domain
0 ≤ x ≤ 1 , 0 ≤ t ≤ tmax,
subject to initial and boundary conditions
ψ(x, 0) = ψ0(x), (2)
ψ(0,t) = ψ(1,t) = 0 . (3)
The initial data function ψ0(x) can be complex in general, but in the cases we will consider will be real. We will also
restrict attention to time-independent potentials, but carry the explicit dependence in the following to emphasize
that, in principle, it is no more difficult to deal with a time-dependent potential than a time-independent one.
We note that ψ can be expressed in terms of its real and imaginary parts, ψRe and ψIm, respectively as
ψ = ψRe + iψIm
A useful diagnostic quantity is the “running integral”, P(x,t), of the probability density, ρ = |ψ|
2 = ψψ

:
P(x,t) =
Z x
0
ψ(x˜,t)ψ
**2;
(x˜,t)dx˜ (4)
If the wavefunction is properly normalized, then we will have
P(1,t) = 1
but even if it is not so normalized (and in our applications there will be no need to ensure normalization), we should
have
P(1,t) = conserved to level of solution error
The quantity
√ρ = |ψ| is also a useful diagnostic. However, as you develop your code to solve the Schr¨odinger
equation you should be prepared to plot the real and imaginary parts of ψ as well.
A family of exact solutions of (1) is
ψ(x,t) = e
−im2π
2
t
sin(mπx) (5)
where m is a positive integer.
1.2 Discretization
We discretize the continuum domain by introducing the discretization level, l, and the ratio of temporal to spatial
mesh spacings
λ =
∆t
∆x
1Then
nx = 2
l + 1
∆x = 2
−l
∆t = λ∆x
nt = round (tmax/∆t) + 1
We apply the Crank-Nicolson discretization approach to (1)–(3) yielding
i
ψ
n+1
j
− ψ
n
j
∆t
= −
1
2


ψ
n+1
j+1
− 2ψ
n+1
j
+ ψ
n+1
j−1
∆x
2 +
ψ
n
j+1
− 2ψ
n
j
+ ψ
n
j−1
∆x
2
?**4;
?**6; +
1
2
V
n+ 1
2
j

ψ
n+1
j
+ ψ
n
j

j = 2, 3, . . . , nx − 1 , n = 1, 2, . . . nt − 1 (6)
ψ
n+1
1
= ψ
n+1
nx
= 0 , n = 1, 2, . . . nt − 1 (7)
ψ
1
j
= ψ0(xj ), j = 1, 2, . . . nx (8)
1.3 Implementation
Implement your solution of (6)–(8) as a MATLAB function with the following header and arguments:
function [x t psi psire psiim psimod prob v] = ...
sch_1d_cn(tmax, level, lambda, idtype, idpar, vtype, vpar)
% Inputs
%
% tmax: Maximum integration time
% level: Discretization level
% lambda: dt/dx
% idtype: Selects initial data type
% idpar: Vector of initial data parameters
% vtype: Selects potential type
% vpar: Vector of potential parameters
%
% Outputs
%
% x: Vector of x coordinates [nx]
% t: Vector of t coordinates [nt]
% psi: Array of computed psi values [nt x nx]
% psire Array of computed psi_re values [nt x nx]
% psiim Array of computed psi_im values [nt x nx]
% psimod Array of computed sqrt(psi psi*) values [nt x nx]
% prob Array of computed running integral values [nt x nx]
% v Array of potential values [nx]
The input parameters idtype and vtype are integers that select which initial data type and potential type, respectively,
are to be used. Dependent on the type, elements of the associated parameter vector will be used to define the
initial data or potential. Specifically, you are to implement options as follows:
Initial data types
• idtype == 0: Exact family (5)
ψ(x, 0) = sin(mπx)
– idpar(1): m
2• idtype == 1: Boosted Gaussian:
ψ(x, 0) = e
ipx
e
−((x−x0)/δ)
2
– idpar(1): x0
– idpar(2): δ
– idpar(3): p
Potential types
• vtype == 0: No potential.
V (x) = 0
• vtype == 1: rectangular barrier or well.
V (x) =

?**0;
?**1;
0 for x < xmin
Vc for xmin ≤ x ≤ xmax
0 for x > xmax
– vpar(1): xmin
– vpar(2): xmax
– vpar(3): Vc
Notes
• The terminology “boosted Gaussian” comes from the fact that by pre-multiplying the (real-valued) Gaussian
profile by e
ipx
, we give the wave packet some momentum in the direction of p (which can have either sign).
• The constant Vc is positive for a barrier, negative for a well.
• Don’t worry about the fact that, strictly speaking, the boosted Gaussian profile is incompatible with the
boundary conditions. In practice we will try to center the Gaussian sufficiently far from the boundaries that
the incompatibility is lost in the truncation error. You should always set the wave function to 0 at x = 0 and
x = 1, including at the initial time.
Coding
• Write equations (6)–(7) as a complex (as in complex number) tridiagonal system for the advanced unknowns
ψ
n+1
j
. In your code, set up the tridiagonal system using spdiags as discussed in class and as illustrated in the
code diff 1d imp.m from Tutorial 6. and solve it using left division. Note that MATLAB has native support for
complex numbers (the variables i and j are both initialized to the unit pure imaginary number, i) and that
you should implement your solution directly using complex arithmetic. As observed above, there is no need to
worry about normalization of the wave function.
• Once you’ve set up the tridiagonal matrix, say A, using spdiags, you can view the corresponding full matrix
using the MATLAB command full(A). This can be useful while debugging.
• Note that the MATLAB abs(z) command when applied to a complex number, z, returns its modulus, |z|.
• The integral in (4) can be computed to O(h
2
) using the trapezoidal formula. Recall that if we are given n
approximate values fi at values of x, xi
, then the trapezoidal approximation is given by
Z xn
x1
f(x)dx ≈
1
2
nX−1
i=1
(fi + fi+1)(xi+1 − xi)
1.4 Convergence testing
Define a level l solution computed using sch 1d cn by ψ
l
. Note that ψ
l
is a function of both the discrete time and
space coordinates. Denote by dψ
l
the quantity defined by

l = ψ
l+1 − ψ
l
3where it is to be understood that the data defined by the grid function (array) ψ
l+1
is 2:1 coarsened in both the
time and space dimensions so that it has the same size as ψ
l
. Then one way we can convergence test sch 1d cn is to
compute
kdψ
l
k2(t
n
) (9)
where
k · k2
denotes the l-2 norm (RMS value) that has been defined before; namely, for any length-m vector v
kvk2 =
sPm
j=1
|v
j
|
2
m
Observe that for complex numbers, |v
j
| is the modulus of the number. Note that (9) involves taking spatial norms
of the pairwise subtraction of grid functions at two different levels. This results in a function of the discrete time,
t
n, on the level-l grid.
Following the development we have seen for solutions of other finite difference equations, we note that since our FDA
is O(h
2
) (where ∆x = h and ∆t = λh), we expect the solution to be O(h
2
) accurate, with ψ
l admitting an expansion
of the form
ψ
l
(x,t) = ψ(x,t) + h
2
l
e2(x,t) + O(h
4
l
) (10)
where e2(x,t) is some error function. From (10) we can deduce that if we graph rescaled values of kdψ
lk2 on a single
plot, then convergence is signalled by near-coincidence of the curves, with better agreement as we go to higher values
of l. In particular, for a test with levels
l = lmin, lmin + 1, . . . , lmax
we should plot
kdψ
lmin k2 , 4kdψ
lmin+1
k2 , 4
2
kdψ
lmin+2
k2 , . . . , 4
lmax−lmin−1
kdψ
lmax−1
k2
Additionally, for the case when idtype = 0, so that we know the exact solution, we can compute the actual solution
errors. Specifically, we can perform precisely the same type of convergence test just described, but where ψ
l+1
is
replaced with ψexact. Thus we define
kE(ψ
l
)k2(t
n
) = kψexact − ψ
l
k2(t
n
)
and use exactly the same plotting strategy for kE(ψ
l
)k2 as we do for kdψ
lk2.
Convergence tests to perform
Ensure that at least one of the following convergence tests, including the plotting, can be performed by executing a
script ctest 1d.
1. idtype = 0, vtype = 0
Other parameters
• idpar = [3]
• tmax = 0.25
• lambda = 0.1
• lmin = 6
• lmax= 9
Perform the 4-level test and make convergence plots as described above for both kdψ
lk2 and kE(ψ
l
)k2. Include
the plots in your report.
2. idtype = 1, vtype = 0
Other parameters
• idpar = [0.50 0.075 0.0]
• tmax = 0.01
4• lambda = 0.01
• lmin= 6
• lmax= 9
Perform the 4-level test and make a convergence plot as described above for kdψ
lk2. Include the plot in your
report.
1.5 Numerical Experiments
Consider the discrete running integral of the probability density:
P
n
j
= P(xj ,t
n
), j = 1, 2, . . . nx , n = 1, 2, . . . nt
Define the temporal average, P¯
j
, of the above quantity:

j
=
Pnt
n=1 P
n
j
nt
and note that the MATLAB command mean can be used to compute this. We will also want to ensure that P¯
j
is
properly normalized so that P¯
nx = 1. We can do this as follows:

j
:= P¯
j
/P¯
nx
, j = 1, 2, . . . nx
In the following we will assume that P¯
j
has been properly normalized. Given two values of x, x1 and x2, satisfying
x2 > x1, we can interpret the quantity
P¯(x2) − P¯(x1)
as the fraction of time our quantum particle spends in the interval x1 ≤ x ≤ x2. Here the notation P¯(x) is to
be interpreted as P¯(x) = P¯(xj ) = P¯
j
where xj is the nearest grid point to x. Now, for a free particle—i.e. for
V = 0—and for sufficiently long times, we expect that
P¯(x2) − P¯(x1) → x2 − x1
That is, the fraction of time the particle spends in the interval is given simply by the width of the interval (this
direct equality is due to the fact that we are solving the Schr¨odinger equation on the unit interval, 0 ≤ x ≤ 1).
For the general case of a non-zero potential, we can then define the excess fractional probability that the particle
spends in a given spatial interval as

e(x1, x2) =
P¯(x2) − P¯(x1)
x2 − x1
For the experiments described below, this quantity will span orders of magnitude so, particularly for the purposes of
plotting, it will be convenient to compute its (natural) logarithm (recall that MATLAB uses log for the natural log).
ln F¯
e(x1, x2) = ln
P¯(x2) − P¯(x1)
x2 − x1
Also observe that although we have called F¯
e(x1, x2) the excess fractional probability, it can in fact satisfy F¯
e(x1, x2) <
1, indicating that the particle is spending less time in the specified interval than a free particle would. Indeed, in the
experiments that follow, you should find that F¯
e(x1, x2) < 1 is the rule rather than the exception.
51.5.1 Experiment 1: Barrier Survey
In this investigation the particle will start to the left of a barrier whose height, V0, is the control parameter for the
experiment. You will then determine the dependence of ln(F¯
e(x1, x2)) on ln(V0) where x1 and x2 span the region to
the right of the barrier.
Parameters
• tmax = 0.10
• level = 9
• lambda = 0.01
• idtype = 1 (boosted Gaussian)
• idpar = [0.40, 0.075, 20.0]
• vtype = 1 (rectangular barrier)
• vpar = [0.6, 0.8, VARIABLE > 0]
• x1 = 0.8
• x2 = 1.0
Write a script called barrier survey that uses sch 1d cn to compute F¯
e(0.8, 1.0) for 251 uniformly spaced values
of ln(V0) ranging from -2 to 5. The script is to make a plot of ln(F¯
e(0.8, 1.0)) versus ln(V0). Include the plot in your
writeup and comment on what you can deduce from it. Since it will take some time for the 251 runs to complete, it
only makes sense to debug your script using fewer values of ln(V0).
1.5.2 Experiment 2: Well Survey
The second experiment is very much like the first, except that we now consider scattering of a particle off a potential
well. Once again you will perform a survey to investigate the dependence of ln(F¯
e(x1, x2)) on ln(V0) where x1 and
x2 span the location of the well.
Parameters
• tmax = 0.10
• level = 9
• lambda = 0.01
• idtype = 1 (boosted Gaussian, but note that p = 0)
• idpar = [0.40, 0.075, 0.0]
• vtype = 1 (rectangular well)
• vpar = [0.6, 0.8, VARIABLE < 0]
• x1 = 0.6
• x2 = 0.8
Write a script called well survey that uses sch 1d cn to compute F¯
e(0.6, 0.8) for 251 uniformly spaced values of
ln(|V0|) ranging from 2 to 10. Note that V0 is strictly less than 0. The script is to make a plot of ln(F¯
e(0.6, 0.8))
versus ln(|V0|). Include the plot in your writeup and discuss what you can conclude from it.
62. Problem 2
2.1 Introduction
In this problem you will solve the two-dimensional Schr¨odinger equation using the ADI technique discussed in class
for the case of the diffusion equation. Indeed, as mentioned in lecture, and should you have time, I suggest that you
consider first solving the 2d diffusion equation using ADI which will give you a good base from which to tackle the
Schr¨odinger equation.
The non-dimensionalized continuum equation is
iψ(x, y, t)t = −(ψxx + ψyy) + V (x, y)ψ
or, multiplying through by −i
ψt = i(ψxx + ψyy) − iV (x, y)ψ (11)
In this last form, the similarity to a diffusion equation with an imaginary diffusion constant (and a source term) is
apparent. Equation (11) is to be solved on the domain
0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , 0 ≤ t ≤ tmax
subject to initial and boundary conditions
ψ(x, y, 0) = ψ0(x, y) (12)
ψ(0, y, t) = ψ(1, y, t) = ψ(x, 0, t) = ψ(x, 1, t) = 0 (13)
A family of exact solutions is given by
ψ(x, y, t) = e
−i(m2
x+m2
y

2
t
sin(mxπx) sin(myπy) (14)
where mx and my are positive integers.
2.2 Discretization and the ADI scheme
As for the 1d case, the continuum domain is discretized by introducing the discretization level, l, and the ratio of
temporal to spatial mesh spacings
λ =
∆t
∆x
=
∆t
∆y
Then
nx = ny = 2l + 1
∆x = ∆y = 2−l
∆t = λ∆x
nt = round (tmax/∆t) + 1
Defining the difference operators ∂
h
xx and ∂
h
yy by

h
xxu
n
i,j ≡
u
n
i+1,j − 2u
n
i,j + u
n
i−1,j
∆x
2

h
yyu
n
i,j ≡
u
n
i,j+1 − 2u
n
i,j + u
n
i,j−1
∆y
2
the following is an ADI discretization of (11):

1 − i
∆t
2

h
xx
ψ
n+ 1
2
i,j =

1 + i
∆t
2

h
xx 1 + i
∆t
2

h
yy − i
∆t
2
V
i,j
ψ
n
i,j ,
i = 2, 3, . . . , nx − 1 , j = 2, 3, . . . , ny − 1 , n = 1, 2, . . . , nt − 1 (15)
7
1 − i
∆t
2

h
yy + i
∆t
2
V
i,j
ψ
n+1
i,j = ψ
n+ 1
2
i,j ,
i = 2, 3, . . . , nx − 1 , j = 2, 3, . . . , ny − 1 , n = 1, 2, . . . , nt − 1 (16)
Equations (15) and (16) are to be supplemented with the initial conditions
ψ
1
i,j = ψ0(xi
, yj ), (17)
and the boundary conditions
ψ
n
1,j = ψ
n
nx,j = ψ
n
i,1 = ψ
n
i,ny = 0 . (18)
2.3 Implementation
Implement your solution of (15)–(18) as a MATLAB function, sch 2d adi with the following header and arguments:
function [x y t psi psire psiim psimod v] = ...
sch_2d_adi(tmax, level, lambda, idtype, idpar, vtype, vpar)
% Inputs
%
% tmax: Maximum integration time
% level: Discretization level
% lambda: dt/dx
% idtype: Selects initial data type
% idpar: Vector of initial data parameters
% vtype: Selects potential type
% vpar: Vector of potential parameters
%
% Outputs
%
% x: Vector of x coordinates [nx]
% y: Vector of y coordinates [ny]
% t: Vector of t coordinates [nt]
% psi: Array of computed psi values [nt x nx x ny]
% psire Array of computed psi_re values [nt x nx x ny]
% psiim Array of computed psi_im values [nt x nx x ny]
% psimod Array of computed sqrt(psi psi*) values [nt x nx x ny]
% v Array of potential values [nx x ny]
As before, the integer arguments idtype and vtype encode the initial data and potential types, respectively, with
idpar and vpar defining the parameters for the various options. In this case you are to implement options as follows:
Initial data types
• idtype == 0: Exact family (14)
ψ(x, y, 0) = sin(mxπx) sin(myπy)
– idpar(1): mx
– idpar(2): my
• idtype == 1: Boosted Gaussian
ψ(x, y, 0) = e
ipxx
e
ipyy
e
−((x−x0)
2/δ2
x+(y−y0)
2/δ2
y
)
– idpar(1): x0
– idpar(2): y0
– idpar(3): δx
– idpar(4): δy
8– idpar(5): px
– idpar(6): py
As previously, don’t worry about the fact that the Gaussian data is strictly speaking incompatible with the
boundary conditions; just be sure to always impose the correct boundary conditions.
Potential types
• vtype == 0: No potential.
V (x, y) = 0
• vtype == 1: Rectangular barrier or well.
V (x, y) = 
Vc for (xmin ≤ x ≤ xmax) and (ymin ≤ y ≤ ymax)
0 otherwise
– vpar(1): xmin
– vpar(2): xmax
– vpar(3): ymin
– vpar(4): ymax
– vpar(5): Vc
• vtype == 2: Double slit. Let j
′ = (ny − 1)/4 + 1. Then
Vi,j′ = Vi,j′+1 = 0 for [(x1 ≤ xi) and (xi ≤ x2)] or [(x3 ≤ xi) and (xi ≤ x4)]
Vi,j′ = Vi,j′+1 = Vc otherwise
Vi,j = 0 for j 6= (j

or j
′ + 1)
That is, V is only non-zero for y-locations given by j = j
′ or j = j
′ + 1 and for x-positions not coincident with
one of the slits. This thus simulates a thin (two mesh points wide) plate at a fixed y-position, with adjustable
slit openings, which span (x1, x2) and (x3, x4).
– vpar(1): x1
– vpar(2): x2
– vpar(3): x3
– vpar(4): x4
– vpar(5): Vc
Coding
• IMPORTANT!! Beware that the transpose operator ’ computes the conjugate transpose (i.e. it will complexconjugate
any complex numbers it encounters), so probably will not be what you want. Use the non-conjugating
operator .’ instead.
2.4 Convergence testing
Convergence test your code in the same manner that you did for the 1d case, taking into account the extra dimension.
In particular, when performing a convergence test, compute the two-level deviation norms
kdψl
k2(t
n
) (19)
as well as the deviations from the exact solution (when using initial data corresponding to an exact solution)
kE(ψ
l
)k2(t
n
) = kψexact − ψ
l
k2(t
n
)
Note that for the 2d case, the spatial norm k · k2 involves a sum over both spatial dimensions, i.e. treat any 2d grid
function as a vector of length nx × ny.
9Convergence test to perform
• idtype = 0, vtype = 0
Other parameters
– idpar = [2, 3]
– tmax = 0.05
– lambda = 0.05
– lmin = 6
– lmax = 9
Write a script called ctest 2d that performs the 4-level test and makes convergence plots as described above for
both kdψlk2 and kE(ψ
l
)k2. Include the plots in your report.
2.5 Numerical experiments
In the true spirit of projects, you’ll be mostly on your own here. At a minimum, make AVI movies of the following
scenarios and include them in your submission. In all cases you should use Gaussian initial data, with or without a
boost (in either and/or both directions) as you find convenient.
1. Scattering off a rectangular barrier (vtype = 1).
2. Scattering off a rectangular well (vtype = 1).
3. Scattering through a double slit (vtype = 2). Try to simulate discernible particle self-interference on the far
side of the slit.
I recommend that you consider using filled contour plots generated with the MATLAB contourf command as the
basis for making your movies. A useful attribute for contourf is the colormap which can be manipulated using the
colormap command.
Final caution
Note that because your routine will be storing the entire time evolution of the solution (as well as several additional
functions), memory requirements can get extreme for long run times. MATLAB will complain if you try to allocate an
array that is “too large” but you may find your machine gets very sluggish before that point, so beware. At level 9
and below you shouldn’t have too many difficulties, again provided that you don’t try integrating to very long times.
Report any undue difficulties to me as usual.
10

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:菲律賓機(jī)場(chǎng)攔人 機(jī)場(chǎng)被攔截解決辦法
  • 下一篇:菲律賓團(tuán)簽和個(gè)簽區(qū)別 團(tuán)簽和個(gè)簽的介紹
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久成人资源| 欧美日韩一区二| 欧美一区二区视频观看视频| 亚洲理伦电影| 日韩午夜中文字幕| 亚洲国产成人高清精品| 国内精品免费在线观看| 国际精品欧美精品 | 国产精品视区| 久久久久久有精品国产| 亚洲午夜在线观看| 欧美亚洲日本网站| 午夜在线成人av| 久久久久久色| 欧美成人一品| 欧美日韩国产精品成人| 欧美一区二区三区在| 免费成人av在线看| 欧美片第一页| 国产美女精品免费电影| 亚洲高清免费| 午夜性色一区二区三区免费视频| 久久亚洲私人国产精品va媚药 | 欧美电影免费观看高清完整版| 国内精品久久久久久| 欧美午夜免费影院| 国内精品伊人久久久久av一坑| 欧美精品色一区二区三区| 欧美国产乱视频| 亚洲欧美电影院| 国产日韩欧美日韩| 在线一区二区三区四区| 国内成人在线| 国产日韩在线播放| 久久综合99re88久久爱| 国产精品亚洲片夜色在线| 亚洲性图久久| 国产日韩一区二区| 免费成人av| 国产一区二区三区不卡在线观看| 亚洲淫片在线视频| 欧美高清视频一区二区三区在线观看 | 欧美午夜精彩| 国产精品a久久久久| 久久精品中文| 国产精品日韩久久久久| 一区二区免费在线播放| 欧美激情一区二区三区| 一本色道久久88亚洲综合88| 国产精品美女一区二区| 久久久久国产精品午夜一区| 国产欧美一区二区精品性| 国产视频在线一区二区| 麻豆精品一区二区av白丝在线| 99视频一区二区三区| 在线精品亚洲| 欧美女主播在线| 在线亚洲欧美专区二区| 国产精品福利在线观看| 久久五月天婷婷| 亚洲第一福利在线观看| 久久久久国产一区二区三区| 久久伊人免费视频| 亚洲第一精品夜夜躁人人爽 | 男同欧美伦乱| 亚洲欧洲日产国产网站| 欧美国产精品中文字幕| 一本久久知道综合久久| 国产三区精品| 欧美偷拍一区二区| 蜜臀久久久99精品久久久久久| 欧美在线不卡视频| 久久久国产成人精品| 欧美成人首页| 欧美乱人伦中文字幕在线| 欧美午夜a级限制福利片| 国产精品一区二区久久久久 | 久久久777| 欧美午夜精品久久久久久浪潮| 久久久久综合网| 欧美区视频在线观看| 国产欧美激情| 国产精品99久久久久久有的能看 | 激情久久婷婷| 日韩小视频在线观看专区| 国产欧美日韩视频在线观看| 一区二区三区av| 亚洲影院色无极综合| 欧美~级网站不卡| 国产精品一区二区久久久| 99re视频这里只有精品| 午夜精品视频一区| 国产偷久久久精品专区| 亚洲欧美日韩一区二区| 欧美中文字幕不卡| 欧美视频四区| 午夜精品免费视频| 雨宫琴音一区二区在线| 欧美日韩国产经典色站一区二区三区| 99精品热视频只有精品10| 欧美日韩国产大片| 欧美一区二区播放| 最近中文字幕mv在线一区二区三区四区 | 99re热这里只有精品视频| 欧美日韩免费在线视频| 亚洲自拍偷拍福利| 亚洲国产精品成人一区二区| 国产精品国产三级国产普通话蜜臀| 亚洲在线成人精品| 亚洲日本中文字幕免费在线不卡| 欧美日韩在线一区二区| 欧美一区二区在线免费观看| 激情成人亚洲| 国产精品v欧美精品∨日韩| 久久精品99国产精品| 亚洲精品午夜| 红桃视频一区| 欧美激情1区| 欧美一级久久久久久久大片| 国产日韩欧美综合在线| 久久综合久久88| 亚洲午夜高清视频| 樱桃国产成人精品视频| 欧美午夜大胆人体| 久久综合伊人77777尤物| 久久riav二区三区| 久热精品在线| 欧美日本中文字幕| 国产精品亚洲综合色区韩国| 国产精品一区二区三区免费观看 | 国产精品videosex极品| 欧美主播一区二区三区美女 久久精品人 | 久久手机精品视频| 亚洲一二三四久久| 亚洲国产精品尤物yw在线观看| 欧美日韩亚洲天堂| 久久精品国产亚洲一区二区| 99精品国产在热久久婷婷| 黑人极品videos精品欧美裸| 国产精品五月天| 国产精品爱啪在线线免费观看| 欧美成人蜜桃| 欧美视频一区二区三区四区| 欧美韩日一区二区| 欧美日本亚洲视频| 国产精品久久久| 国产精品视频免费一区| 国产精品久久一区主播| 国产欧美日韩亚洲精品| 国产精品一区二区在线| 一区视频在线| 亚洲午夜精品17c| 久久久精品2019中文字幕神马| 久久亚洲影院| 国产精品日韩精品欧美精品| 国产色爱av资源综合区| 国产女主播一区二区| 国产精品第十页| 国产亚洲成精品久久| 亚洲精品一区二区三区四区高清| 久久国产精品72免费观看| 久久精品国产v日韩v亚洲| 亚洲国产精品一区二区www在线| 日韩亚洲成人av在线| 欧美日本中文字幕| 在线视频中文亚洲| 欧美新色视频| 久久久精品999| 在线观看成人av电影| 欧美88av| 亚洲综合精品四区| 国产久一道中文一区| 亚洲午夜免费视频| 午夜日韩电影| 一本在线高清不卡dvd| 欧美一区免费| 麻豆freexxxx性91精品| 国产精品video| 韩国成人精品a∨在线观看| 亚洲区欧美区| 欧美资源在线| 国产精品大片wwwwww| 狠狠色丁香婷婷综合| 亚洲午夜久久久| 欧美黄在线观看| 一区二区亚洲欧洲国产日韩| 亚洲桃花岛网站| 国产精品mm| 99精品热视频| 欧美精品亚洲二区| 在线欧美亚洲| 久久久久久亚洲精品中文字幕| 欧美日韩精品综合在线| 91久久精品国产91久久| 快播亚洲色图| 亚洲国产精品t66y| 欧美高清视频| 亚洲精品少妇30p| 欧美激情bt| 亚洲性线免费观看视频成熟|