99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做 MPHY0041、代寫 C++設計編程
代做 MPHY0041、代寫 C++設計編程

時間:2024-12-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



 UCL DEPARTMANT OF MEDICAL PHYSICS AND
BIOMEDICAL ENGINEERING
Module Code: Module Title : Coursework Title : Lecturer:
Date Handed out: Student ID (Not Name)
MPHY0041
Machine Learning in Medical Imaging Assessed Coursework
Dr. Andre Altmann
Friday, October 25th 2024
Undergraduate / Postgraduate Assessed Coursework Tracking Sheet
              Submission Instruction: Before the submission deadline, you should digitally submit your source code and generated figures (a single jupyter notebook file including your written answers). In case you submit multiple files, all files need to be combined in one single zip file and submitted on the module page at UCL Moodle.
Coursework Deadline: Friday, November 29th 2024 at 16:00 at UCL Moodle submission section
Date Received
Date Returned to Student:
The Department of Medical Physics and Biomedical Engineering follows the UCL Academic Manual with regards to plagiarism and coursework late submission. UCL Policy on Plagiarism
UCL Policy on Late Submission of Coursework
If you are unable to submit on-time due to extenuating circumstances (EC), please refer to the UCL Policy on Extenuating Circumstances and contact our EC Secretary at medphys.teaching@ucl.ac.uk as soon as possible.
UCL Policy on Extenuating Circumstances
Please indicate what areas of your coursework you particularly would like feedback on:
Mark (%):
Please note that the mark is provisional and could be changed when the exam boards meet to moderate marks.
                
Please note: This is an AI Category 1 coursework (i.e., AI technologies cannot be used to solve the questions): https://www.ucl.ac.uk/teaching-learning/generative-ai-hub/using- ai-tools-assessment.
Please submit a single jupyter notebook file for Exercises 1, 2, and 3. The file should contain code, plots and comments that help the understanding of your answers. You can give your written answers as a Markdown within the jupyter notebook.
The provided jupyter notebook Notebook_MPHY0041_2425_CW1.ipynb contains the individual gap codes/functions for Exercise 2 and the functions provided for Exercise 3. Please use this notebook as the basis for your submission.
1. Load the dataset ‘Dementia_train.csv’ it contains diagnosis (DX), a cognitive score (ADAS13) and two cerebrospinal fluid (CSF) measurements for two proteins: amyloid and tau. There are three diagnostic labels: CN, MCI, and Dementia.
a) Remove MCI subjects from the dataset. Compute means for each of the three
measurements (ADAS13, ABETA, TAU) for the ‘CN’ (𝜇!") and the ‘Dementia’ (𝜇#$)
groups. In addition, compute the standard deviation (ҵ**;) for these three measures
across the diagnostic groups. Assume that the data follow a Gaussian distribution:
   1 %&( *%+ -! 𝑓(w**9;)= ҵ**;√2𝜋Ү**; ' ,
,
with the means and standard deviation as computed above. Compute the decision boundary between the two disease groups for each of the three features (with the prior probabilities 𝜋.! = 𝜋#$ = 0.5).
Load the dataset ‘Dementia_test.csv’ that contains the same information for another 400 participants. After removing people with MCI, use the decision boundaries from above to compute accuracy, sensitivity and specificity for separating CN from Dementia for each of the three features. [8]
b) Using sklearn functions, train a LinearRegression to separate CN from Dementia subjects using ABETA and TAU values as inputs. Generate a scatter plot for ABETA and TAU using different colours for the two diagnostic groups. Compute the decision boundary based on the linear regression and add it to the plot. What is the accuracy, sensitivity and specificity of your model on the test data for separating CN from Dementia? [7]
c) The previous analyses ignored the subjects with MCI. Going back to the full dataset, compute means for all three groups for ABETA and TAU as well as the joint variance-covariance matrix Σ. Use these to compute linear decision boundaries between all pairs of classes (with the prior probabilities 𝜋.! = 𝜋/!0 =
𝜋#$ = 0.33) without using any models implemented in sklearn. Generate a new scatterplot and add the three decision boundaries. What is the accuracy, sensitivity and specificity for separating CN from Dementia with this method?
[10]

2. Here we complete implementations for different machine learning algorithms. The code with gaps can be found in the notebook Notebook_MPHY0041_2425_CW1.ipynb.
a) The function fit_LogReg_IWLS contains a few gaps that need to be filled for the function to work. This function implements Logistic Regression using iterative weighted least squares (IWLS) as introduced in the lectures. Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset (DX column indicates PD status, remaining columns are the features). Use the LogisticRegression implemented in sklearn to train a model on the same data. Make a scatter plot between the coefficients obtained from your implementation and the sklearn model. Comment on the
result.
(Hint: The operator @ can be used for matrix multiplications; the function np.linalg.pinv() computes the pseudo-inverse of the matrix: X-1). [7]
b) The function fit_LogReg_GRAD aims to implement Logistic Regression using gradient descent. However, there are still a few gaps in the code. Complete the computation of the cost (J(β)) as well as the update of the beta coefficients. (Hint: gradient descent aims to minimise the cost; however, Logistic Regression is fitted by maximising the log likelihood). Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset.
Run the training for 3000 iterations with 𝛼 = 0.1. Compare the obtained coefficients to the ones obtained from the IWLS implementation in part a). Comment on the result. [7]
c) The function fit_LogReg_GRAD_momentum aims to implement Logistic Regression using gradient descent with momentum. Extend your solution from (b) and add momentum to the optimization as introduced in the lectures. Use the parameter gamma as the trade-off between momentum and gradient. Train your model on the dataset Syn_Momentum.csv (two inputs X1, X2, and one target y). Run the gradient descent for 100 iterations and compare to the standard gradient descent from (b) also run for 100 iterations (both with 𝛼 = 0.001). How does the Loss evolve over the iterations? Explain your observation. [7]
d) When working with medical data we often encounter biases. This could mean that our target variable (𝑦) is accidentally correlated to another variable (𝑦'). We would like to estimate the model to predict 𝑦, while ignoring the effects introduced by 𝑦'. The trade-off between the objectives can be modified using the parameter 𝛿. Provide a Loss function for this scenario (where both 𝑦 and 𝑦'are fitted using a Logistic Regression). Complete the function fit_LogReg_GRAD_competing, which should implement these logistic regressions with gradient descent. Use the variable delta to implement the trade-off. Load the dataset sim_competitive.csv, it contains two input features (x1, x2) and two output features (y1, y2). Apply your function with different values for 𝛿 (0, 0.5, 0.75, 1.0). Make a scatter plot of the data and add the decision boundaries produced by the four models. [9]

3. This exercise uses T2-weighted MR images of the prostate and surrounding tissue (information here). The task to be solved is to automatically segment the prostate in these images. The input images are gray-scale images with 128x128 pixels (below left) and the output should be a binary matrix of size 128x128, where a 1 indicates the prostate (below right).
The promise1215.zip archive contains three sets of images: training, validation, test. For training, there are 30 MR images paired with their ground truth (i.e., masks). For instance, train/img_02_15.png is the MRI and train/lab_02_15.png is the corresponding ground truth. The function preprocess_img computes a series of filters (raw, sobel, gabor, difference of gaussians, etc.) to be used for the machine learning algorithm. For instance, application to the above image results in the following channels (Figure 1). Use the function provided in create_training_set to randomly sample 1000 patches of size 21x21 from the 30 training images to generate an initial dataset. The resulting dataset is heavily imbalanced (more background patches than target), the function sub_sample is used to generate a random subset of 1000 patches from the entire training data with an approximate 50-50 distribution.
a) Using sklearn, train an SVC model to segment the prostate. Optimize kernel choice (e.g., RBF or polynomial with degree 3) and the cost parameter (e.g., C in the range 0.1 to 1000) using an appropriate variant of cross-validation. Measure performance using the Area Under the ROC Curve (roc_auc) and plot the performance of the kernels depending on the C parameter. (Hint: when SVC seems to take an endless time to train, then change your choice of C parameters; large C parameters ® little regularization ® long training time. E.g., in Colab this took about 30 minutes). [10]
b) Based on your result from a) select the best model parameters and make predictions of the 10 images in the validation dataset. Compute the DICE coefficient and roc_auc for each image. Display the original image, the ground truth, and your segmentations for any 5 images in your validation set. Provide the average DICE coefficient and roc_auc for the entire validation dataset. (Hint: this can take a few minutes per image.) [8]
    
 Figure 1: Feature channels. Numbered from top left to bottom right. (1) raw input image (2) Scharr filter, (3-6) Gabor filter with frequency 0.2 in four directions (7-10) Gabor filter with frequency 0.4 in four directions (1**14) Gabor filter with frequency 0.6 in four directions (15-18) Gabor filter with frequency 0.8 in four directions (19) Local Binary Pattern (LBP) features, and (20) difference of gaussians.
c) Instead of the SVC, train a tree-based ensemble classifier and make predictions for the validation images. Report the average roc_auc and DICE coefficient for the entire validation set. What performs better: the SVC or the tree ensemble? Are tree ensembles or the SVC faster to train and apply? Explain why this is the case.
[7]
d) Use the tree-based ensemble method and explore how the amount of training data (i.e., sub sample size: 500, 1000, 2500, 5000), the patch dimensions (11x11, 17x17, 21x21, 27x27, 31x31) affects the performance on the validation set. [10]
e) As shown in the lectures, post-process your prediction using morphological operations and filters to achieve a better segmentation result. (Hint: some morphological operations are implemented in skimage.morphology; link). Report how your post-processing influences your DICE score on the validation
data. [5]
f) Using your best combination of training data size and patch dimension (from d) and post processing methods (from e), estimate the performance on unseen samples from the test set. Display the original image, the ground truth, and your segmentations for any 5 images in your test set. Provide average DICE coefficient for the entire test set. [5]

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CE235、代做 Python 語言編程
  • 下一篇:COMP3173 代做、代寫 Java/c++編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                蜜桃一区二区三区在线| 成人中文字幕合集| www.久久精品| 久久久久久久综合日本| 国产精品一二三四五| 国产精品久久久久久久久免费相片| 91视频在线看| 婷婷综合五月天| 久久亚洲一级片| 91麻豆精品视频| 欧美aaaaa成人免费观看视频| 日韩视频免费观看高清完整版在线观看| 韩国av一区二区三区四区| 欧美二区在线观看| 精品成人一区二区三区四区| 国产电影精品久久禁18| 亚洲成人www| 亚洲国产精品精华液ab| 欧美日本一区二区在线观看| 成人免费视频免费观看| 日日摸夜夜添夜夜添亚洲女人| 欧美激情一区在线| 91精品欧美综合在线观看最新| 国产suv精品一区二区三区| 自拍偷拍欧美精品| 欧美日韩精品电影| 成人自拍视频在线观看| 久久国内精品自在自线400部| 一区二区三区四区视频精品免费| 欧美一区二区三区在线看| 91麻豆swag| 成人黄色片在线观看| 免费一级欧美片在线观看| 亚洲精品综合在线| 日韩精品在线一区二区| 欧美男女性生活在线直播观看| 一本一道波多野结衣一区二区| 国产精品色哟哟| 亚洲国产精品久久久久婷婷884 | 亚洲成人自拍一区| 中文字幕不卡的av| 亚洲国产精品t66y| 91精品国产免费| 久久九九久久九九| 美女视频一区二区三区| 美女精品一区二区| 91国产免费看| 人人狠狠综合久久亚洲| 91精品一区二区三区在线观看| 午夜精品爽啪视频| 欧美色图免费看| 蜜桃视频一区二区三区 | 亚洲女性喷水在线观看一区| 秋霞午夜鲁丝一区二区老狼| 日本一区二区三区在线不卡| 国产亚洲综合av| 99久久国产综合精品麻豆| 亚洲成av人片一区二区三区| 在线视频你懂得一区| 久久99国产精品麻豆| 精品处破学生在线二十三| 亚洲国产欧美在线| 亚洲第一搞黄网站| 亚洲免费观看高清完整版在线| 日韩精品一区二区三区视频在线观看| 亚洲精品一线二线三线无人区| 国产精品久久久久影院| 国产精品黄色在线观看| 国产精品久久久久久福利一牛影视 | 在线观看www91| 亚洲图片欧美色图| 精品一区二区三区欧美| 一区二区三区自拍| 国产精品每日更新| 精品av久久707| 欧美色综合久久| 国产激情视频一区二区三区欧美| 日韩精品中文字幕在线一区| 日本在线观看不卡视频| 一区二区三区视频在线看| 91精品综合久久久久久| 美女在线一区二区| 日韩电影在线观看电影| 亚洲一区免费观看| 亚洲精品免费电影| 日韩不卡免费视频| 欧洲一区二区三区在线| 日韩视频一区二区在线观看| 亚洲国产精品麻豆| 亚洲国产乱码最新视频| 777午夜精品视频在线播放| 久久午夜羞羞影院免费观看| 麻豆久久一区二区| 91一区二区在线| 美女任你摸久久| 午夜不卡av免费| 国产真实乱子伦精品视频| 99riav久久精品riav| 日韩免费看网站| 一区二区高清免费观看影视大全| 久久se精品一区二区| 欧美亚洲国产bt| 国产人成亚洲第一网站在线播放| 亚洲成人三级小说| 99精品欧美一区二区三区小说 | 国产一区二区在线看| 成人黄动漫网站免费app| 91精品国产综合久久福利| 国产精品麻豆99久久久久久| 日本中文字幕不卡| 欧美日韩国产高清一区二区三区| 国产视频一区二区三区在线观看 | 久久久99久久精品欧美| 国产精品伦理在线| 亚洲精品视频在线观看网站| 毛片基地黄久久久久久天堂| 欧美日精品一区视频| 2020国产精品| 久久综合久久综合九色| 亚洲特级片在线| 精品在线播放免费| 欧美自拍偷拍一区| 国产精品伦理一区二区| 国产综合成人久久大片91| 99精品欧美一区二区三区综合在线| 欧美一区二区三区成人| 亚洲午夜私人影院| 色诱亚洲精品久久久久久| 中文字幕中文在线不卡住| 久久国内精品视频| 日韩欧美国产不卡| 日日夜夜精品视频免费| 欧美精品一卡二卡| 奇米精品一区二区三区在线观看一| 日本道精品一区二区三区| 中文字幕一区在线观看视频| 国产高清亚洲一区| 国产精品18久久久久久vr| 色综合久久中文字幕| 99精品在线观看视频| 国产精品久久久久久亚洲毛片| 国产99久久久国产精品| 中文字幕免费不卡| 在线影视一区二区三区| 日本不卡一区二区| 精品久久一二三区| 99re6这里只有精品视频在线观看| 亚洲欧洲日产国码二区| 欧美日韩的一区二区| 国产一区二区三区四| 一区二区在线观看免费| 欧美精品一区二区三区蜜桃视频| 丰满少妇久久久久久久| 成人高清视频在线观看| 亚洲人成精品久久久久久| 69av一区二区三区| 色综合咪咪久久| 国产一区二区伦理片| 亚洲已满18点击进入久久| 久久日韩粉嫩一区二区三区| 国产一区二区三区视频在线播放| 图片区小说区区亚洲影院| 色狠狠一区二区| 亚洲午夜电影在线| 精品久久一区二区三区| 成人免费视频国产在线观看| 亚洲欧美经典视频| 欧美精品电影在线播放| 国产精品一区二区黑丝| 亚洲午夜三级在线| 精品一区二区免费在线观看| 5月丁香婷婷综合| 精品少妇一区二区三区在线播放| 日韩免费观看高清完整版| 国产精品久线在线观看| 午夜久久久久久电影| 日韩中文字幕91| 国产一区二区成人久久免费影院| 成人高清av在线| 成人av资源下载| 久久亚区不卡日本| 日本怡春院一区二区| 豆国产96在线|亚洲| 久久婷婷色综合| 另类欧美日韩国产在线| 亚洲成年人影院| 1区2区3区欧美| 久久久久青草大香线综合精品| 欧美日韩一区二区三区四区五区| 国产精品自拍毛片| 白白色亚洲国产精品| 久久精品99久久久| 日韩av电影天堂| 天天综合色天天综合色h| 午夜精品久久久久久| 国产精品国产精品国产专区不片| 26uuu色噜噜精品一区| 91精品国产91久久久久久最新毛片| 色综合久久综合中文综合网| 99久久精品情趣|