99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MATH38161、代做R程序設(shè)計
代寫MATH38161、代做R程序設(shè)計

時間:2024-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日批视频免费看| 9191在线视频| 手机在线观看日韩av| 日本人妻一区二区三区| 天天做天天爱夜夜爽| 一区二区黄色片| 11024精品一区二区三区日韩| 亚洲专区第一页| 国产黄色三级网站| 久久国产精品波多野结衣| 欧美成人精品欧美一| 天堂在线一区二区三区| 中文字幕乱码视频| 不卡的在线视频| 九九精品免费视频| 色一情一交一乱一区二区三区| 五月激情五月婷婷| 99久久精品免费看国产交换| 国产成人久久精品77777综合| 精品人妻一区二区免费| 日韩一区二区不卡视频| 中文字幕在线观看精品| 国产欧美一区二区三区在线看蜜臂| 久久精品一级片| 亚洲成人手机在线观看| 国产成人久久精品77777综合| 久久久久免费看| 中文字幕国产高清| 国产情侣激情自拍| 三级一区二区三区| wwwww黄色| 日本黄色中文字幕| 91精品国产乱码久久久久| 激情五月婷婷小说| 亚洲成人av免费看| 丰满少妇被猛烈进入一区二区| 欧美激情国内自拍| 91丝袜在线观看| 蜜桃视频污在线观看| 亚洲黄色小说网址| 久久久久国产精品夜夜夜夜夜| 一起草在线视频| 国产一区二区三区四区在线| 微拍福利一区二区| 国产农村妇女精品久久| 日韩欧美国产另类| 国产富婆一级全黄大片| 熟妇高潮一区二区高潮| 影音先锋国产在线| 国产黄色大片网站| 天堂中文av在线| 国产在线观看成人| 中文字幕免费高清视频| 久久精品一区二区三区四区五区| 中文字幕第四页| 欧美日韩黄色网| 东京干手机福利视频| 手机av在线不卡| 精品国产999久久久免费| 中文字幕一区二区三区手机版| 久久精品一区二区免费播放| 亚洲一区二区影视| 日韩熟女一区二区| 国产综合精品久久久久成人av| 中文字幕一区二区免费 | 亚洲精品无码久久久久久久| 久久久精品国产sm调教网站| 亚洲一区二区图片| 特黄aaaaaaaaa真人毛片| 国产有码在线观看| 一二三区免费视频| 五月婷婷六月丁香激情| 麻豆精品免费视频| 国产浮力第一页| 亚洲欧美日韩综合网| 侵犯稚嫩小箩莉h文系列小说 | 精品人妻一区二区免费视频| 亚洲免费成人网| 天堂av.com| 欧美亚韩一区二区三区| 国产视频三区四区| www.色日本| 亚洲精品午夜久久久久久久| 手机毛片在线观看| 欧美日韩人妻精品一区在线 | 色欲av伊人久久大香线蕉影院| 国产熟妇搡bbbb搡bbbb| www.成年人| 亚洲午夜精品久久久| 亚洲av片一区二区三区| 日韩人妻无码精品综合区| 久久久久9999| 国产专区第一页| 国产免费一区二区三区免费视频| 99久久综合网| 一级特黄免费视频| 亚洲欧美一区二区三| 亚洲第一天堂影院| 特一级黄色大片| 少妇久久久久久久| 青青青国产在线| 密臀av一区二区三区| 国产三级午夜理伦三级| 北岛玲一区二区| 成人h动漫精品一区二区下载| 夜夜躁日日躁狠狠久久av| 亚洲免费成人网| 亚洲综合精品视频| 91亚洲精品国偷拍自产在线观看| 亚洲午夜精品在线观看| 亚洲另类在线观看| 亚洲精品第五页| 亚洲欧美日韩综合在线| 亚洲精品中文字幕乱码无线| 亚洲天堂av片| a一级免费视频| 国产高潮流白浆| 黄色激情视频在线观看| 久久精品视频18| 欧美日韩亚洲自拍| 日韩在线视频不卡| 五月天av网站| 亚洲美女综合网| 成年人在线观看av| 国产人妻精品一区二区三区| 精产国品一区二区| 欧美熟妇精品一区二区蜜桃视频| 欧洲成人午夜精品无码区久久| 视频一区二区三区四区五区| 亚洲第一区av| www.五月婷| 激情综合五月网| 欧洲成人一区二区三区| 五月婷婷丁香在线| 亚洲精品永久视频| 国产高清av片| 男女做暖暖视频| 天堂资源在线播放| 亚洲免费视频二区| 国产精品人人妻人人爽| 久久久www成人免费毛片| 日本免费网站在线观看| 永久久久久久久| 国产成人自拍视频在线| 精品人妻一区二区三| 丝袜熟女一区二区三区| 亚洲欧美日韩网站| 国产探花在线视频| 日本一级一片免费视频| 亚洲精品字幕在线| 国产婷婷在线观看| 手机av在线看| 99久久精品免费看国产交换| 久久精品女人毛片国产| 一色道久久88加勒比一| 国产精品久久久午夜夜伦鲁鲁| 内射无码专区久久亚洲| 亚洲精品一区二区口爆| 国产亚洲精品久久久久久打不开| 日本视频网站在线观看| 亚洲天堂av一区二区| 久久草视频在线| 中文字幕一区二区三区四区在线视频| 国产成人精品亚洲男人的天堂| 日本黄色免费片| www久久久com| 日韩女同一区二区三区| www日本视频| 色哟哟一一国产精品| 国产夫妻性爱视频| 视频二区在线播放| 国产高清av片| 亚洲成a人片在线www| 国产又粗又猛又爽| 最近日本中文字幕| 久久久久久久九九九九| 亚洲一区二区三区蜜桃| 欧美一区二不卡视频| www.黄色com| 天海翼在线视频| 国产一区二区麻豆| 亚洲精品久久久久久久蜜桃 | 中文字幕一区二区三区免费看| 国产一区二区三区成人| 亚洲高清在线不卡| 欧美成人精品网站| 99久久人妻无码中文字幕系列| 三级黄色在线观看| 国产香蕉在线视频| 亚洲天堂中文字幕在线| 日韩av电影网址| 国内av免费观看| 999精品视频在线观看播放| 四虎影成人精品a片| 国产亚洲精品久久久久久打不开| 中文字幕无码日韩专区免费| 毛片a片免费观看| 国产高潮流白浆喷水视频| 自拍视频一区二区| 天海翼在线视频|