99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩在线播放| 久久久美女毛片| 日韩精品一区二区三区在线| 亚洲成人动漫在线免费观看| 欧美日韩综合在线| 日韩高清在线电影| 欧美成人精品二区三区99精品| 激情综合网av| 亚洲蜜桃精久久久久久久| 7777精品久久久大香线蕉| 精品亚洲porn| 亚洲欧美另类久久久精品2019| 777xxx欧美| 成人自拍视频在线| 亚洲成年人网站在线观看| 精品久久人人做人人爰| 92精品国产成人观看免费| 日本vs亚洲vs韩国一区三区二区 | 蜜桃精品在线观看| 国产欧美日韩精品一区| 欧美性猛交xxxx乱大交退制版| 狠狠色狠狠色综合系列| 亚洲一区二区偷拍精品| 国产喷白浆一区二区三区| 538在线一区二区精品国产| yourporn久久国产精品| 国产麻豆一精品一av一免费| 亚洲成人免费视频| 亚洲欧美日韩国产另类专区| 国产亚洲精品7777| 精品欧美一区二区在线观看| 精品视频色一区| 色综合久久久网| 国产·精品毛片| 国产高清不卡一区二区| 韩国欧美国产1区| 首页国产欧美久久| 亚洲第一会所有码转帖| 亚洲精品高清视频在线观看| 国产农村妇女精品| 久久久久99精品一区| 精品少妇一区二区三区视频免付费| 欧美在线一二三四区| 97se亚洲国产综合自在线不卡 | 一本色道久久加勒比精品| 中文字幕视频一区| 日本乱码高清不卡字幕| 国产精品一级片| 久久中文字幕电影| 欧美精品日韩精品| 欧美性受极品xxxx喷水| 色偷偷久久一区二区三区| 国产成人免费高清| 国产乱对白刺激视频不卡| 麻豆精品一区二区av白丝在线| 亚洲成人综合网站| 午夜国产不卡在线观看视频| 一区二区三区免费看视频| 亚洲美女屁股眼交| 亚洲综合丁香婷婷六月香| 亚洲欧美经典视频| 亚洲午夜精品在线| 图片区小说区区亚洲影院| 亚洲精品免费在线观看| 亚洲午夜视频在线| 日本免费在线视频不卡一不卡二| 五月婷婷综合激情| 久久av中文字幕片| 成人精品在线视频观看| 99精品视频一区二区| 欧美在线三级电影| 日韩一区二区麻豆国产| 国产色一区二区| 一区二区三区欧美日| 一二三四社区欧美黄| 亚洲高清免费一级二级三级| 午夜成人免费视频| 久久99精品网久久| 国产91精品一区二区麻豆亚洲| 97精品国产露脸对白| 欧美电影一区二区| 日本一区二区视频在线| 亚洲亚洲精品在线观看| 蜜桃精品视频在线| 一本久久综合亚洲鲁鲁五月天| 欧美性三三影院| 精品国产凹凸成av人导航| 欧美国产精品一区二区三区| 亚洲欧美日韩国产中文在线| 日韩av一区二区三区| 国产精品乡下勾搭老头1| 色欧美日韩亚洲| 日韩欧美中文字幕一区| 亚洲欧美日韩国产另类专区| 精品亚洲aⅴ乱码一区二区三区| 91网站在线观看视频| 精品国产乱码久久久久久免费 | 色婷婷av久久久久久久| 91精品国产黑色紧身裤美女| 国产欧美精品一区二区色综合朱莉| 一区二区三区中文在线观看| 狠狠色综合日日| 欧美精品 日韩| 亚洲欧美区自拍先锋| 另类专区欧美蜜桃臀第一页| 色综合天天综合网天天狠天天| 亚洲一区电影777| 日本成人在线电影网| 99国产精品视频免费观看| 欧美一二三区在线观看| 亚洲免费av在线| 成人开心网精品视频| 久久精品水蜜桃av综合天堂| 日韩和欧美的一区| 欧美视频一二三区| 亚洲一区二区欧美激情| 在线观看一区二区视频| 国产精品美女久久久久av爽李琼| 精品影院一区二区久久久| 欧美一区二区成人| 日韩精品亚洲专区| 欧美日韩不卡一区| 一区二区欧美在线观看| 99精品一区二区三区| 亚洲欧洲在线观看av| 成人黄色大片在线观看| 亚洲天堂福利av| 99re66热这里只有精品3直播 | 亚洲视频一区在线观看| 成a人片亚洲日本久久| 国产精品污污网站在线观看| 成人一区二区视频| 中文字幕不卡的av| 99久久国产综合精品色伊| 亚洲人成网站色在线观看| 97精品久久久久中文字幕| 亚洲一区二区三区中文字幕在线| 欧美艳星brazzers| 日本成人超碰在线观看| 精品国产一区二区三区久久影院 | 日韩欧美成人一区二区| 蜜桃视频一区二区三区在线观看| 日韩午夜中文字幕| 国产高清精品网站| 国产精品久久福利| 欧美性猛交xxxx乱大交退制版| 亚洲成人av福利| 日韩美一区二区三区| 成人av在线播放网站| 亚洲在线视频网站| 日韩精品专区在线影院重磅| 国产精品小仙女| 亚洲综合成人在线| 精品欧美一区二区久久| 99久久精品国产麻豆演员表| 亚洲国产日韩a在线播放性色| 日韩一区和二区| 99久久亚洲一区二区三区青草| 亚洲图片自拍偷拍| 欧美高清在线视频| 欧美日韩夫妻久久| 成人动漫视频在线| 五月天一区二区三区| 久久久av毛片精品| 在线中文字幕不卡| 国内精品视频一区二区三区八戒 | 国产日韩av一区二区| 欧美优质美女网站| 国产一区二区三区香蕉| 亚洲精品成人精品456| 久久精品亚洲麻豆av一区二区| 在线观看网站黄不卡| 国产乱码精品一品二品| 五月综合激情网| 一区二区三区四区国产精品| 日韩精品资源二区在线| 欧美亚洲综合在线| 91丨九色丨黑人外教| 激情综合网av| 日韩精品1区2区3区| √…a在线天堂一区| www激情久久| 日韩一二在线观看| 欧美日韩小视频| 91丨九色丨蝌蚪富婆spa| 成人黄色一级视频| 成人免费毛片aaaaa**| 久久成人精品无人区| 丝瓜av网站精品一区二区| 亚洲精品国产视频| 中文成人综合网| 久久精品综合网| 国产校园另类小说区| 欧美zozozo| 欧美不卡一二三| 久久品道一品道久久精品| 精品久久一二三区| 精品国产欧美一区二区| 久久综合久久综合亚洲| 亚洲精品在线免费播放|