99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美日韩国产综合一区二区| 激情成人综合| 欧美主播一区二区三区美女 久久精品人| 国产一区视频在线观看免费| 欧美激情综合色综合啪啪| 欧美一区在线看| 在线午夜精品| 亚洲国产日韩综合一区| 国产亚洲精品久久久久婷婷瑜伽| 欧美黄色免费网站| 免费成人高清| 久久中文字幕一区| 久久久精品欧美丰满| 亚洲一区二区免费| 一本色道久久88综合日韩精品| 国语精品一区| 欧美揉bbbbb揉bbbbb| 欧美国产日本在线| 久久亚洲国产成人| 老色鬼久久亚洲一区二区| 欧美在线播放| 欧美中文字幕不卡| 久久精品国产久精国产思思| 亚洲欧美日韩国产一区| 亚洲在线观看免费视频| 亚洲一区二区动漫| 亚洲永久免费视频| 亚洲欧美日韩在线高清直播| 亚洲欧美国产日韩中文字幕| 亚洲性色视频| 亚洲欧美在线观看| 久久国产日韩欧美| 久久精品视频网| 免费一区视频| 欧美日韩成人在线观看| 欧美日韩国产不卡在线看| 欧美亚州一区二区三区| 国产精品国产成人国产三级| 国产精品日日摸夜夜添夜夜av | 亚洲精品国产系列| 亚洲乱码视频| 亚洲一区二区三区四区五区黄| 亚洲小说区图片区| 亚洲欧美日韩综合| 久久综合一区二区三区| 欧美精品乱码久久久久久按摩| 欧美日韩伦理在线免费| 国产精品麻豆成人av电影艾秋| 国产女人精品视频| **欧美日韩vr在线| 亚洲精品中文字幕有码专区| 亚洲天堂免费在线观看视频| 久久激情网站| 欧美日本一道本| 国产精品系列在线播放| 亚洲国产成人午夜在线一区| 宅男噜噜噜66一区二区| 先锋资源久久| 欧美国产日韩视频| 国产精品综合色区在线观看| 亚洲电影免费观看高清完整版在线观看| 亚洲国产欧美久久| 中国成人黄色视屏| 免费高清在线一区| 国产精品乱码人人做人人爱| 在线免费不卡视频| 夜夜嗨一区二区三区| 久久一区二区视频| 国产精品人人做人人爽| 亚洲国产第一| 久久精精品视频| 欧美性色综合| 亚洲欧洲日产国产综合网| 欧美一区二区啪啪| 欧美日韩国产天堂| 亚洲国产专区| 久久电影一区| 国产精品区二区三区日本| 亚洲国产精品一区二区久| 欧美一区在线视频| 国产精品亚洲一区二区三区在线| 亚洲国产三级在线| 久久免费的精品国产v∧| 欧美亚州一区二区三区| 亚洲精品视频一区| 美腿丝袜亚洲色图| 亚洲国产欧美另类丝袜| 久久精品最新地址| 国产精品亚洲精品| 在线性视频日韩欧美| 欧美精品一区二区视频| 亚洲精品裸体| 欧美劲爆第一页| 亚洲国内高清视频| 欧美电影在线| 亚洲人成人一区二区三区| 免费成人高清在线视频| 亚洲国产精品成人一区二区| 久久躁日日躁aaaaxxxx| 一区二区三区在线观看视频| 久久夜色撩人精品| 亚洲电影一级黄| 欧美成人午夜免费视在线看片| 在线不卡视频| 欧美成人影音| 一本色道久久综合亚洲精品不卡 | 国产在线视频欧美一区二区三区| 亚洲女ⅴideoshd黑人| 国产精品久久99| 亚洲校园激情| 国产欧美日韩一区二区三区| 久久成人精品| 亚洲第一黄色网| 欧美成人精品三级在线观看| 亚洲美女淫视频| 国产精品一区二区三区四区| 久久电影一区| 亚洲精品1234| 国产精品久久久久久久浪潮网站| 亚洲欧美色婷婷| 激情综合久久| 欧美人成在线视频| 亚洲欧美综合| 亚洲国产精品99久久久久久久久| 欧美精品福利在线| 亚洲一区在线观看视频 | 最新亚洲一区| 国产精品日日摸夜夜摸av| 久久久久99| 亚洲美女在线观看| 国产主播一区二区三区| 欧美日本一区| 老司机一区二区三区| 中文一区二区| 在线国产日韩| 国产精品爱久久久久久久| 久久久精彩视频| 亚洲视频1区| 亚洲欧洲精品天堂一级 | 午夜亚洲精品| 亚洲人成网站999久久久综合| 欧美性开放视频| 麻豆精品精华液| 久久国产精品一区二区| 9i看片成人免费高清| 狠狠色综合播放一区二区| 欧美肉体xxxx裸体137大胆| 久久久五月婷婷| 香蕉久久a毛片| 亚洲视频在线免费观看| 亚洲国产黄色| 国产亚洲精品一区二区| 国产精品男gay被猛男狂揉视频| 欧美插天视频在线播放| 久久久精品国产免大香伊 | 欧美天堂亚洲电影院在线观看| 老司机午夜精品视频| 久久av老司机精品网站导航| 国产精品99久久不卡二区| 亚洲精品护士| 亚洲精品视频一区| 亚洲精品女av网站| 亚洲国产精品尤物yw在线观看| 国产一区二区0| 国产日产欧美一区| 国产在线精品自拍| 国产偷国产偷精品高清尤物| 国产伦理一区| 国产日韩欧美一区| 国产亚洲一二三区| 黄色成人在线| 亚洲电影在线免费观看| 亚洲精品日韩综合观看成人91| 亚洲国产精品久久精品怡红院| 在线观看av不卡| 亚洲片区在线| 一区二区三区四区五区精品视频 | 99精品国产高清一区二区| 亚洲高清一二三区| 夜夜躁日日躁狠狠久久88av| 日韩一级二级三级| 亚洲一区尤物| 久久久久在线观看| 欧美freesex交免费视频| 欧美人与性动交a欧美精品| 欧美三级中文字幕在线观看| 国产精品午夜久久| 激情综合五月天| 亚洲欧洲精品成人久久奇米网| 一本久道久久综合狠狠爱| 亚洲一区二区三区免费视频| 久久精品99国产精品酒店日本| 蜜桃av一区二区| 国产精品福利网| 激情久久五月天| 1000部国产精品成人观看| 一区二区毛片| 久久久久青草大香线综合精品| 免费久久99精品国产自| 欧美手机在线视频|