99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲免费在线观看视频| 激情五月婷婷综合| 免费欧美在线| 亚洲欧美日韩一区在线| 亚洲国产专区| 国产在线日韩| 国产欧美日韩免费| 国产精品vip| 欧美另类一区| 免费观看在线综合| 久久九九国产| 欧美一级二区| 亚洲综合激情| 亚洲影院高清在线| 一区二区国产日产| 亚洲人www| 亚洲国产精品一区二区第四页av| 国产小视频国产精品| 国产精品乱码久久久久久| 欧美日韩国产精品自在自线| 欧美大片在线观看一区| 另类人畜视频在线| 久久人91精品久久久久久不卡| 午夜精品久久久久久久久| 亚洲午夜一级| 亚洲欧美偷拍卡通变态| 亚洲永久免费视频| 亚洲欧美成人一区二区在线电影 | 亚洲国产精彩中文乱码av在线播放| 国产精品视频免费一区| 国产精品一区在线观看| 国产欧美日韩不卡| 韩国三级电影久久久久久| 精品1区2区| 亚洲成人在线网| 亚洲精美视频| 亚洲免费av电影| 亚洲特黄一级片| 欧美亚洲综合在线| 久久美女性网| 欧美日韩高清一区| 国产精品免费一区豆花| 国产婷婷成人久久av免费高清| 国产伦精品一区二区三区免费迷 | 国产欧美一区二区三区在线看蜜臀 | 欧美午夜www高清视频| 欧美日韩国产精品自在自线| 欧美激情第10页| 欧美午夜精品久久久久久人妖 | 欧美一区二区视频在线| 久久精品在线免费观看| 欧美高清不卡| 欧美承认网站| 欧美日韩国产一级| 国产精品一区二区欧美| 一区二区三区在线高清| 99re66热这里只有精品4| 亚洲一区二区3| 久久精品国产精品亚洲精品| 老司机午夜精品视频| 欧美日韩国产一区二区| 国产一区二区精品丝袜| 亚洲日韩第九十九页| 亚洲欧美国产77777| 久久在线视频在线| 国产精品久久久久久久久搜平片| 韩国三级在线一区| 一二三区精品| 欧美jizz19性欧美| 国产一区二区三区久久久| 亚洲欧洲一区二区三区久久| 欧美一区二区三区在线免费观看| 欧美剧在线免费观看网站| 国产午夜亚洲精品不卡| 一区二区三区福利| 欧美肥婆bbw| 精品成人国产| 欧美亚洲视频| 欧美性感一类影片在线播放| 在线免费一区三区| 久久精品99| 国产精品青草久久久久福利99| 亚洲美女诱惑| 欧美精品一区二区三区一线天视频| 国产日韩在线看片| 性色av香蕉一区二区| 国产精品女主播| 亚洲一区二区三区成人在线视频精品 | 老司机一区二区| 国产精品二区三区四区| 日韩视频在线免费观看| 欧美福利专区| 亚洲美女av在线播放| 久久亚洲免费| 伊人成人开心激情综合网| 久久成人资源| 尤物视频一区二区| 久久综合999| 亚洲国产视频a| 欧美激情91| 99伊人成综合| 国产精品久久久久永久免费观看| 一区二区三区不卡视频在线观看 | 亚洲一区欧美二区| 国产精品极品美女粉嫩高清在线 | 亚洲欧美日韩网| 国产情人节一区| 久久综合九色| 亚洲日韩欧美视频一区| 欧美日韩久久| 亚洲欧美99| 激情欧美一区二区三区| 欧美高清视频www夜色资源网| 亚洲日本欧美| 国产精品久久久久久久9999| 欧美一区二区视频观看视频| 韩国av一区二区三区四区| 欧美a级片一区| 亚洲尤物在线视频观看| 国产亚洲一区二区在线观看 | 亚洲激情二区| 国产精品久久久久aaaa九色| 久久国产一区二区三区| 亚洲精品激情| 国产精品中文字幕欧美| 狂野欧美激情性xxxx| av成人免费| 黄色精品一区| 国产精品久久国产精品99gif | 亚洲经典自拍| 国产日本欧美一区二区三区| 欧美成年人网| 欧美一区二区在线视频| 亚洲欧洲在线免费| 国产亚洲一二三区| 欧美日韩中文字幕| 欧美+亚洲+精品+三区| 亚洲一区二区在线免费观看| 黑人巨大精品欧美一区二区小视频| 欧美精品一区二区三区在线播放| 性欧美超级视频| 制服丝袜激情欧洲亚洲| 亚洲电影在线免费观看| 国产欧美日韩精品丝袜高跟鞋| 欧美激情一二三区| 久久久久国产精品一区三寸 | 午夜免费日韩视频| 亚洲老司机av| 亚洲国产高清一区| 国产主播精品在线| 国产免费成人| 国产精品视频免费在线观看| 欧美精品日本| 欧美xart系列在线观看| 久久久久网址| 久久黄金**| 久久精品国产69国产精品亚洲| 亚洲一区二区高清视频| 亚洲久色影视| 亚洲精品美女免费| 亚洲欧洲日本专区| 亚洲经典在线| 日韩一级欧洲| 这里只有精品视频| 亚洲专区一区二区三区| 亚洲素人在线| 亚洲欧美日韩成人| 午夜电影亚洲| 欧美尤物巨大精品爽| 久久成人18免费网站| 久久国产主播精品| 久久综合久久久| 欧美大尺度在线观看| 欧美精品三级在线观看| 欧美另类在线播放| 欧美日韩一区二区视频在线观看| 欧美日韩123| 国产精品美女999| 国产深夜精品| 亚洲国产精品一区二区www| 亚洲黄页视频免费观看| 日韩午夜黄色| 亚洲图中文字幕| 欧美综合第一页| 欧美高清在线视频| 国产精品成av人在线视午夜片| 国产精品三上| 亚洲第一页自拍| 亚洲午夜免费福利视频| 久久国产婷婷国产香蕉| 欧美国产先锋| 国产美女精品视频免费观看| 国产亚洲精品一区二555| 亚洲国产精品t66y| 亚洲网站在线播放| 久久久久国产精品www| 欧美日韩免费看| 国内外成人免费激情在线视频| 亚洲国产日韩美| 亚洲欧美日韩在线高清直播|