99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MATH38161、代做R程序設(shè)計
代寫MATH38161、代做R程序設(shè)計

時間:2024-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲免费在线观看| 久久99精品久久久| 日韩av一区二区在线影视| 精品在线免费观看| 色av成人天堂桃色av| 欧美一级爆毛片| 日韩一区日韩二区| 免费久久精品视频| 欧美图区在线视频| 国产欧美日韩三区| 蜜臀av一区二区| 日本高清不卡视频| 国产精品久久久久久久久果冻传媒 | 国产午夜精品在线观看| 又紧又大又爽精品一区二区| 久久99精品久久久| 欧美精品自拍偷拍| 一区二区在线看| 不卡一区二区三区四区| 26uuu国产电影一区二区| 亚洲一区av在线| 99v久久综合狠狠综合久久| 日韩免费成人网| 日日夜夜免费精品| 欧美性受xxxx黑人xyx| 国产精品亲子乱子伦xxxx裸| 国产一区久久久| 欧美精品一区二区三| 日韩综合在线视频| 91成人在线免费观看| 综合精品久久久| 丁香另类激情小说| 久久久久久久综合| 精品亚洲免费视频| 欧美不卡激情三级在线观看| 免费人成网站在线观看欧美高清| 欧美性淫爽ww久久久久无| 亚洲成人动漫一区| 一本色道综合亚洲| 亚洲欧美日韩久久| 99麻豆久久久国产精品免费 | 日韩亚洲欧美在线观看| 久久se精品一区精品二区| 欧美一级艳片视频免费观看| 美女视频黄 久久| 久久一留热品黄| 国产毛片一区二区| 国产欧美日韩视频一区二区| av不卡一区二区三区| 亚洲素人一区二区| 91高清视频免费看| 视频一区在线播放| 欧美成人aa大片| 国产成人精品www牛牛影视| 国产精品免费视频观看| 在线观看91视频| 天天综合网天天综合色| 欧美电影精品一区二区| 国产一区视频网站| 国产精品美女www爽爽爽| 91久久人澡人人添人人爽欧美| 日韩中文字幕91| 2020国产成人综合网| 成人av手机在线观看| 亚洲免费观看高清完整| 欧美老年两性高潮| 国产福利精品导航| 亚洲一区自拍偷拍| 337p日本欧洲亚洲大胆色噜噜| 成人app软件下载大全免费| 亚洲18色成人| 国产三区在线成人av| 欧美吞精做爰啪啪高潮| 精品一区二区三区在线观看国产 | 午夜精品福利久久久| 久久久精品综合| 欧美日韩在线播放一区| 精品一区二区三区不卡| 亚洲免费在线观看| 2023国产精品自拍| 97久久久精品综合88久久| 首页亚洲欧美制服丝腿| 国产精品福利一区| 欧美一区二区三区视频免费播放 | 亚洲福利一区二区三区| 国产精品日产欧美久久久久| 日韩欧美一级在线播放| 91国偷自产一区二区开放时间| 麻豆精品久久久| 亚洲免费电影在线| 久久婷婷色综合| 56国语精品自产拍在线观看| 91天堂素人约啪| 国产精品2024| 黄页网站大全一区二区| 香蕉成人啪国产精品视频综合网| 国产欧美日韩视频一区二区| 日韩午夜中文字幕| 欧美三级日韩三级国产三级| 欧美三电影在线| 99热99精品| 国产99一区视频免费| 麻豆freexxxx性91精品| 男女男精品网站| 五月开心婷婷久久| 亚洲一区二区av在线| 亚洲精品中文在线| 亚洲码国产岛国毛片在线| 国产精品视频观看| 国产午夜精品久久久久久久 | 欧美一级黄色片| 8x8x8国产精品| 91超碰这里只有精品国产| 欧美性猛交xxxxxx富婆| 91影视在线播放| 色噜噜狠狠色综合中国| 99re这里都是精品| 99久久99久久久精品齐齐| caoporn国产精品| 99精品桃花视频在线观看| 91在线精品一区二区| 波多野结衣一区二区三区| 成人美女在线视频| a在线播放不卡| 色八戒一区二区三区| 色域天天综合网| 欧美精品色一区二区三区| 欧美丰满一区二区免费视频| 欧美日韩一区不卡| 欧美一区二区久久| 精品免费视频一区二区| 久久精品男人天堂av| 国产精品人人做人人爽人人添| 综合久久久久综合| 午夜伊人狠狠久久| 麻豆成人在线观看| 成人高清伦理免费影院在线观看| 在线视频综合导航| 日韩一区二区三区免费看| 久久久久久久久岛国免费| 成人免费视频在线观看| 亚洲综合图片区| 麻豆成人免费电影| 粉嫩一区二区三区性色av| 色女孩综合影院| 91.xcao| 国产精品无码永久免费888| 亚洲欧美欧美一区二区三区| 日韩国产精品91| 大美女一区二区三区| 欧美区视频在线观看| 国产亚洲精品免费| 一区二区三区**美女毛片| 激情欧美日韩一区二区| 91小视频免费观看| 欧美一级久久久久久久大片| **欧美大码日韩| 久久99精品久久久久久| 91成人看片片| 精品国产一区二区三区忘忧草 | 日本乱码高清不卡字幕| 久久久久久免费| 亚洲高清免费观看| 成人免费看视频| 欧美一区二区三区思思人| 亚洲素人一区二区| 国精产品一区一区三区mba视频| 在线亚洲一区二区| 国产日韩v精品一区二区| 日韩激情视频网站| 色哟哟国产精品| 国产精品视频一区二区三区不卡| 日韩 欧美一区二区三区| 91啪在线观看| 国产精品系列在线| 九九**精品视频免费播放| 欧美少妇性性性| 国产精品每日更新| 国产乱子伦视频一区二区三区 | 成人理论电影网| 亚洲一区二区欧美激情| 国产麻豆视频精品| 日韩女优视频免费观看| 亚洲狠狠爱一区二区三区| 成人av电影在线观看| 久久久久久久一区| 亚洲国产另类精品专区| 日韩精品一区在线观看| 亚洲另类在线制服丝袜| 91麻豆国产精品久久| 国产日韩欧美高清在线| 另类中文字幕网| 日韩一区二区在线观看视频 | 丝袜国产日韩另类美女| 99久久er热在这里只有精品66| 国产日韩精品一区二区三区| 亚洲色图制服诱惑| 久久精品国产免费看久久精品| 91.com在线观看| 日韩精品成人一区二区三区|