99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MATH38161、代做R程序設(shè)計
代寫MATH38161、代做R程序設(shè)計

時間:2024-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产又粗又黄又爽的视频| 欧美综合视频在线| 国产xxxx在线观看| 国产成人av免费看| 丰满少妇被猛烈进入一区二区| www中文在线| 国产精品不卡av| 黄色成人一级片| 欧美亚洲精品天堂| 欧美黄色aaa| 欧美一区,二区| 天天干天天干天天操| 中文字幕1区2区| 91久久精品国产91性色69| 国产ts在线观看| 美女视频久久久| 少妇精品无码一区二区三区 | 插我舔内射18免费视频| 国产成人在线播放视频| 精品欧美一区二区久久久| 日本二区三区视频| 在线观看中文字幕网站| 999免费视频| 久草视频在线免费看| 日本免费精品视频| 亚洲黄色精品视频| 国产高清免费在线观看| 免费人成视频在线播放| 中文字幕av网站| а天堂中文在线资源| 精品手机在线视频| 天天摸天天碰天天爽天天弄| 亚洲一区二区三区日韩| 精品乱子伦一区二区| 婷婷丁香综合网| 成人福利小视频| 欧美在线 | 亚洲| 亚洲午夜在线播放| 老熟妻内射精品一区| 在线不卡免费视频| 国产精品区在线| 少妇网站在线观看| 波多野结衣激情视频| 人妻无码一区二区三区免费| 亚洲黄色小视频在线观看| 精品国产国产综合精品| 中文字幕+乱码+中文| 国模无码视频一区| 亚洲第一天堂久久| 国产探花在线视频| 中日韩一级黄色片| 国产特级黄色片| 一区二区视频免费看| 国产一级中文字幕| 伊人色综合久久久| 黑人粗进入欧美aaaaa| 中国美女黄色一级片| 久久发布国产伦子伦精品| 最新日本中文字幕| 久久精品这里只有精品| 亚洲一级片免费看| 欧美一级淫片免费视频黄| www欧美激情| 小向美奈子av| 久久久精品少妇| 999精品视频在线| 日本在线观看视频网站| 国产xxxxhd| 亚洲国产精品第一页| 久草国产在线观看| 最新中文字幕av| 日本一区二区三区免费视频| 国产乱码一区二区| 亚洲精品成人无码熟妇在线| 欧美三级午夜理伦| 国产精品视频123| 亚洲精品久久久久久久蜜桃| 日本一级黄色录像| 黄色一级片免费在线观看| 亚洲一区二区福利视频| 天天天天天天天干| 欧美 亚洲 另类 激情 另类| 国产黄色大片免费看| 亚洲欧美另类综合| 性色av一区二区三区四区 | 黄色av免费观看| 69亚洲精品久久久蜜桃小说| 手机免费av片| 久久永久免费视频| 好吊视频在线观看| 99热99这里只有精品| 中文字幕国产免费| 色婷婷av一区二区三| 欧美成人乱码一二三四区免费| 国产激情久久久久久熟女老人av| 中文字幕在线免费看线人| 婷婷色中文字幕| 日本三级一区二区三区| 麻豆三级在线观看| 久久精品久久久久久久| 国产精品无码久久av| www.偷拍.com| 9i精品福利一区二区三区| 亚洲视频免费播放| 中文乱码人妻一区二区三区视频| 欧日韩不卡视频| 人妻体内射精一区二区| 欧美在线精品一区二区三区| 精品一区二区三区四| 国产在线不卡av| 国产精品国产一区二区三区四区 | 男女男精品视频网站| 久久精品国产av一区二区三区 | 超碰在线人人爱| 91福利免费视频| 一级aaa毛片| 亚洲精品一区二区三区区别| 中文字幕av网站| 中文字幕一区二区久久人妻| 中文字幕一区三区久久女搜查官| 婷婷丁香花五月天| 一区二区三区免费高清视频| 亚洲成人黄色片| 中文字幕欧美人妻精品| 中文字幕第31页| 亚洲精品久久久久久无码色欲四季| 亚洲av成人无码久久精品| 在线观看亚洲国产| 亚洲欧洲综合在线| 97人妻精品一区二区三区视频| 99日在线视频| 国产欧美久久久| 黄色激情在线观看| 男女视频在线观看网站| 色婷婷综合视频| 亚洲爱爱综合网| 亚洲欧美日韩色| 丰满人妻一区二区三区免费| 国产精品18p| 精品久久久噜噜噜噜久久图片| 免费a级黄色片| 少妇性l交大片7724com| 中文字幕一区二区三区人妻| 亚洲午夜久久久久久久久红桃| 插我舔内射18免费视频| 久久狠狠高潮亚洲精品| 日韩av男人天堂| 亚洲乱码在线观看| wwwwxxxx国产| 精品人妻伦一区二区三区久久| 青青草免费av| 亚洲天堂avav| 精品国产亚洲一区二区麻豆| 日韩电影在线观看一区二区| 中文字幕av久久爽av| 丰满少妇一区二区三区| 男女免费视频网站| 亚洲国产精品久久人人爱潘金莲| 非洲一级黄色片| 日本在线视频播放| 亚洲欧美激情一区二区三区| 国内精品国产成人国产三级| 日韩久久中文字幕| 91视频免费网址| 麻豆视频免费在线播放| 中文字幕在线观看日| 国内精品国产三级国产aⅴ久| 天堂在线视频免费| www.com亚洲| 欧美一区二区三区观看| 亚洲无人区码一码二码三码的含义 | 日本a√在线观看| 亚洲精品国产成人av在线| 国产在线拍揄自揄拍无码视频| 色欲狠狠躁天天躁无码中文字幕| 一级久久久久久久| 久久久久久久久久久久久久av| 亚洲av无码一区东京热久久| 成人午夜免费福利| 视频二区在线观看| 国产精品探花视频| 午夜美女福利视频| 激情五月婷婷在线| 亚洲高清在线不卡| 免费精品99久久国产综合精品应用| 亚洲精品一区二区三区新线路| 可以在线观看av的网站| 97超碰人人模人人人爽人人爱| 欧美三级韩国三级日本三斤在线观看| 91视频综合网| 日本亚洲色大成网站www久久| 国产91丝袜美女在线播放| 午夜精品在线播放| 精品肉丝脚一区二区三区| 野战少妇38p| 添女人荫蒂视频| 九九热在线视频播放| 91国内在线播放| 日日噜噜噜噜人人爽亚洲精品| 国产网站在线看|