99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MATH38161、代做R程序設(shè)計
代寫MATH38161、代做R程序設(shè)計

時間:2024-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                久久99国产精品免费网站| 亚洲成a人v欧美综合天堂下载 | 亚洲v中文字幕| 中文字幕一区二区三区乱码在线| 欧美一区二区三区在线视频| 色哟哟一区二区| 日本丶国产丶欧美色综合| av在线播放不卡| 成人黄色一级视频| 国产成人h网站| 成人美女在线视频| 99热在这里有精品免费| 99国产一区二区三精品乱码| 99re6这里只有精品视频在线观看| 成人久久视频在线观看| 成人毛片在线观看| 97久久久精品综合88久久| 91小视频免费看| 欧亚洲嫩模精品一区三区| 欧美三级日韩三级| 欧美亚洲精品一区| 91精品国产福利| 久久久久久久久久久久久久久99 | 国产麻豆成人传媒免费观看| 国产精品亚洲一区二区三区在线| 国产成人丝袜美腿| 波多野结衣在线aⅴ中文字幕不卡| 风间由美性色一区二区三区| 一本久久a久久精品亚洲| 欧美日本在线一区| 久久综合久色欧美综合狠狠| 国产精品另类一区| 亚洲一二三专区| 久久av资源网| 91亚洲精品久久久蜜桃网站| 91精品国产91热久久久做人人| 久久午夜免费电影| 亚洲免费色视频| 日本欧美一区二区在线观看| 国产精品一区久久久久| 97成人超碰视| 欧美大黄免费观看| 国产精品理伦片| 青青草91视频| 日本乱人伦aⅴ精品| 欧美一区二区三区电影| 中文字幕一区二区5566日韩| 婷婷中文字幕综合| 国产91丝袜在线18| 欧美一卡2卡3卡4卡| 国产精品福利一区| 狠狠色丁香九九婷婷综合五月| 99久久er热在这里只有精品15| 日韩一区二区三区av| 中文字幕亚洲不卡| 麻豆成人91精品二区三区| 972aa.com艺术欧美| 亚洲精品在线观看视频| 亚洲国产精品一区二区久久| 波多野结衣一区二区三区| 欧美tickling网站挠脚心| 亚洲第一综合色| 一道本成人在线| 日本一区二区三区电影| 久久精品国产精品亚洲精品| 在线观看免费视频综合| 国产精品短视频| 国产不卡视频在线观看| 精品国产91洋老外米糕| 天天综合天天综合色| 91国模大尺度私拍在线视频| 国产精品久久久久久久午夜片| 久久精品免费看| 欧美一区二区精品在线| 亚洲国产另类av| 在线观看亚洲成人| 亚洲青青青在线视频| 99久久伊人久久99| 中文字幕一区二区三区四区| 成人av高清在线| 中文字幕在线播放不卡一区| 成人高清视频在线观看| 国产精品久久久久久久蜜臀| 99久久婷婷国产综合精品| 国产成人综合在线播放| 亚洲午夜在线电影| 国产女人aaa级久久久级| 91最新地址在线播放| 在线免费不卡视频| 欧美日韩一区二区三区高清| 日韩一区二区三区四区| 日日骚欧美日韩| 欧美日韩综合一区| 亚洲蜜臀av乱码久久精品蜜桃| 久久精品国产在热久久| 久久丝袜美腿综合| 色综合天天性综合| 国产不卡一区视频| 日本二三区不卡| 国产成人在线视频网站| 久久99在线观看| 国产精品综合二区| 69av一区二区三区| 欧美午夜精品免费| 风间由美一区二区三区在线观看 | 国产精品久久久一本精品| 日韩欧美一级精品久久| 欧美肥大bbwbbw高潮| 欧美一三区三区四区免费在线看 | 高清在线成人网| 成人欧美一区二区三区1314| 午夜精品福利视频网站| 亚洲一区视频在线观看视频| 亚洲第一主播视频| 亚洲黄一区二区三区| 夜夜爽夜夜爽精品视频| 天天操天天干天天综合网| 香蕉影视欧美成人| 另类小说欧美激情| 免费一级片91| av高清久久久| 青娱乐精品在线视频| 欧美美女bb生活片| 亚洲国产精品国自产拍av| 色婷婷综合久久久久中文一区二区 | 欧美欧美午夜aⅴ在线观看| 国产综合成人久久大片91| 亚洲免费在线看| 欧美成人vps| 91福利在线观看| 国产suv一区二区三区88区| 五月婷婷另类国产| 最好看的中文字幕久久| 26uuu精品一区二区在线观看| 日本精品一区二区三区高清 | 国产美女娇喘av呻吟久久| 亚洲成a人v欧美综合天堂下载| 国产精品免费人成网站| 91精品国产91热久久久做人人| 91片在线免费观看| 国产69精品久久99不卡| 青青草原综合久久大伊人精品 | 欧美猛男男办公室激情| 91影院在线免费观看| 国产经典欧美精品| 激情都市一区二区| 日本不卡中文字幕| 亚洲国产一二三| 亚洲午夜激情网页| 亚洲国产欧美日韩另类综合| 一区二区三区在线视频播放| 亚洲激情在线激情| 一区二区三区丝袜| 一区二区三区在线视频免费| 亚洲男人的天堂网| 亚洲精品福利视频网站| 一区二区三区高清| 亚洲bdsm女犯bdsm网站| 天堂在线一区二区| 亚洲va韩国va欧美va| 亚洲自拍与偷拍| 午夜视黄欧洲亚洲| 天堂一区二区在线免费观看| 日韩精品一级中文字幕精品视频免费观看| 一区二区三区四区在线免费观看 | 欧美一区二区三区在线视频| 欧美福利一区二区| 日韩精品一区二区三区三区免费 | 久久免费美女视频| 国产精品午夜电影| 一区二区三区四区蜜桃| 亚洲成人精品在线观看| 理论片日本一区| 东方欧美亚洲色图在线| av电影在线观看不卡| 欧美亚洲高清一区二区三区不卡| 欧美人牲a欧美精品| 欧美tk丨vk视频| 综合久久国产九一剧情麻豆| 亚洲女同一区二区| 免费av成人在线| 国产·精品毛片| 欧美三级电影在线观看| 日韩一级精品视频在线观看| 久久伊人中文字幕| 亚洲女性喷水在线观看一区| 亚洲成人777| av在线免费不卡| 日韩精品专区在线影院重磅| 成人欧美一区二区三区小说| 亚洲成av人片一区二区梦乃| 国产美女一区二区三区| 91视频国产观看| 欧美一区二区三区性视频| 综合久久久久久| 久久爱另类一区二区小说| 99riav一区二区三区| 日韩片之四级片| 亚洲国产精品综合小说图片区| 国产v日产∨综合v精品视频|