99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做COMP3230、Python語言程序代寫
代做COMP3230、Python語言程序代寫

時間:2024-11-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP**30 Principles of Operating Systems
Programming Assignment Two
Due date: November 17 , 2024, at 23:59
Total 12 points – RC2
Programming Exercise – Accelerate LLM Inference using Multi-Threading
Objectives
1. An assessment task related to ILO 4 [Practicability] – “demonstrate knowledge in applying system 
software and tools available in the modern operating system for software development”.
2. A learning activity related to ILO 2.
3. The goals of this programming exercise are:
• to have hands-on practice in designing and developing multi-threading programs;
• to learn how to use POSIX Pthreads (and Semaphore) libraries to create, manage, and 
coordinate multiple threads in a shared memory environment;
• to design and implementsynchronization schemes for multithreaded processes using 
semaphores, or mutex locks and condition variables.
Tasks
Optimizing the throughput of GPTs is an important topic. Similar to other neural networks, GPT and
its variations utilize matrix-vector-multiplication, or called fully-connected/linear layer in Deep 
Learning, to apply parameters learned. Meanwhile, GPT leverages multi-head attention, a 
mechanism to adopt important information from history tokens. Thus, to accelerate GPT and get a 
faster response, it’s critical to have faster matrix-vector-multiplication and faster multi-head 
attention computation. Given the non-sequential property of the two algorithms, parallel 
computing based on multi-threading is usually considered helpful.
Following PA1, we use Llama3, an open-source variation of GPT for this assignment. A single-thread C 
implementation of the inference program, named seq.c, is provided as the starting point of your 
work. You need to use POSIX Pthreads with either the semaphore or (mutex_lock + condition variable) 
to implement a multi-threading version of the inference program, which parallelizes both matrix vector-multiplication and multi-head attention functions. This multi-threading version shall 
significantly accelerate the inference task of the Large Language Model. Moreover, to reduce the 
system workload in creating multiple threads, you need to reuse threads by formulating them into a 
thread pool.
Acknowledgement: The inference framework used in this assignment is based on the open-source 
project llama2.c by Andrej Karpathy. The LLM used in this assignment is based on SmolLM by 
HuggingfaceTB. Thanks open-source!
GPT-based Large Language Model
At high-level, GPT is a machine that can generate words one by one based on previous words (also 
known as prompts), and Figure 1a illustrates the basic workflow of GPT on generating “How are you”:
Figure 1. GPT Insight. a) GPT generates text one by one, and each output is the input of the next generation. b) GPT has
four major components: Tokenizer turns word (string) into a vector, Softmax + Sample gives the next token, and each layer 
has Attention and FFN (Feed-Forward Network), consisting of many Matrix-Vector-Multiplication
Figure 1b showcases the inference workflow of each word like “You” in “How are you”: First, words 
are transformed into token embeddings using the tokenizer, which is essentially a (python) 
dictionary that assigns a unique vector to each word. Embedding vectors go through multiple layers, 
which involve three steps.
• The first step is Multi-Head Attention, where the model first calculates attention scores based on 
the cosine similarity between the current word's query embedding and embeddings of previous 
words (keys). Then weighted average value embeddings are used to formulate output.
• The second step is a feed-forward network (FFN) that applies more learnable parameters 
through Matrix-Vector-Multiplication.
• The third step is positional embedding, which takes into account the ordering of words in natural 
language by adding positional information by RoPE (not required in this assignment).
After going through all the layers, the embeddings are classified to generate a specific word as the 
output. This involves using a softmax function to convert the embeddings into a probability 
distribution, and randomly sample a word from the distribution.
Task 1: Matrix-Vector-Multiplication
Figure 2. Matrix-Vector-Multiplication Algorithm.
As shown in Figure 2, Matrix-Vector-Multiplication can be illustrated as two iterations:
For Each Row i
For Column j, accumulate Matrix[i][j] * Vector[j] to Out[i]
More specifically, a sample single-thread C implementation isshown below:
void mat_vec_mul(float* out, float* vec, float* mat, int col, int row) { 
for (int i = 0; i < row; i++) { // for each row i
float val = 0.0f;
for (int j = 0; j < col; j++) // for each column j
val += mat[i * col + j] * vec[j]; // mat[i * col + j] := mat[i][j] 
out[i] = val;
}
}
Your 1st task in this assignment is to parallelize the outer iteration (at the 2nd line) by allocating
blocks of rows to threads. More specifically, in the case of a Matrix with 𝑑 rows and 𝑛 threads 
working on the computation, assuming that 𝑑 is divisible by 𝑛, the k-th thread will handle the rows
from [𝑘 × 𝑑/𝑛] to [(𝑘+1) × 𝑑/𝑛−1]. To illustrate, if we have a 6-row matrix with 2 threads, the 0th
thread will handle rows 0 to 2, while the 1st thread will handle rows 3 to 5. If 𝑑 is not divisible by 𝑛,
we can assign 𝑛−1 threads with ⌈
𝑑/𝑛 ⌉ rows, while the last thread is assigned with the remaining
rows. More explanation on such a design can be found in Appendix a. Parallel Checking.
In this assignment, the model used is quantized, so there is a slight difference with the above C code
but the workflow is still the same.
Task 2: Multi-Head Attention
Figure 3. Attention and Multi-Head Attention Algorithm. The computation of each head is separated.
As shown in Figure 3, Multi-Head Attention can be illustrated by the following iterations:
For Each Head h,
For Each Timestep t,
For head item i, accumulate q[h][i] * keys[h][t][i] to score[h][t]
SoftMax(score)
For Each Timestep t,
For head item i, out[h][i] += score[h][t] * values[h][t][i]
More specifically, a sample single-thread C implementation isshown below:
void multi_head_attn(float* out, float* q, float* key_cache, float* value_cache, 
float* att, int seq_len, int n_heads, int head_size, int kv_dim, int kv_mul) {
for (int h = 0; h < n_heads; h++) { // iterate over all heads, PARALLEL THIS LOOP
float* head_q = q + h * head_size; // query vector for this head 
float* head_att = att + h * seq_len; // attention scores for this head 
for (int t = 0; t <= pos; t++) { // iterate over all timesteps
// get the key vector for this head and at this timestep
float* head_k = key_cache + t * kv_dim + (h / kv_mul) * head_size; 
float score = 0.0f;
for (int i = 0; i < head_size; i++)
score += head_q[i] * head_k[i]; // attention score := q dot k
score /= sqrtf(head_size); // normalize by head_size
head_att[t] = score; // save to the attention buffer
}
softmax(head_att, pos + 1); // THREADS-SAFE SoftMax to normalize scores to weight 
float* head_out = out + h * head_size; // out vector for this head 
memset(head_out, 0, head_size * sizeof(float)); // clear buffer
for (int t = 0; t <= pos; t++) {
// get the value vector for this head and at this timestep
float* head_v = value_cache + t * kv_dim + (h / kv_mul) * head_size; 
float a = head_att[t]; // attention weight for this timestep
for (int i = 0; i < head_size; i++)
head_out[i] += a * head_v[i]; // accumulate the weighted sum to head out
}
}
}
Though looks complicated, it’s worth noticing that the computation involved for each head k is completely 
independent of other heads.
Your 2nd task in this assignment is to parallelize the head-iteration (in 3rd line of the above sample
code) by assigning blocks of heads to different threads. More specifically, consider a model with h 
heads and n threads. If h is divisible by n, then k-th thread will handle heads from [𝑘 × ℎ/𝑛] to [(𝑘+ 
1) × ℎ/𝑛−1]. And if h is not divisible by n, we can assign 𝑛−1 threads with ⌈
ℎ/𝑛⌉ heads, and the last
thread handles the remaining heads. For example, our model has 9 heads, and with 4 threads, they
will handle 0-2 (1st thread), 3-5 (2nd thread), 6-8 (3rd thread) and the last thread shall handle no 
heads.
Note: Due to MQA, the no. of heads for a query might not be equal to the no. of heads for key /
value, but this is already handled correctly within the inner loop, just stick to n_heads.
Task 3: Thread Pool
Moreover, to reduce the performance overhead of frequent thread creation and cancellation, your 3rd 
task is to create one set of N threads and reuse them for all mat_vec_mul() and multi_head_attn()
function calls, instead of creating N threads for each mat_vec_mul() or multi_head_attn() call. One 
popular method is based on synchronization using a thread pool as shown in Figure 4.
Figure 4. Reference Synchronization Workflow, consisting of 3 functions: a) INIT_THR_POOL function: create N threads, 
each thread falls asleep immediately; b) MAT_VEC_MUL or MULTI_HEAD_ATTN function: assign new parameters and 
tasks, wake up all threads to work, and wait until threads to finish before returned; c) CLOSE_THR_POOL function: wake
up threads to collect system usage and exit, wait until all threads to exit and collect usage of terminated threads.
More specifically, the synchronization workflow in Figure 4 consists of 4 functions and a thread
function:
1. init_thr_pool(int thr_count): to be called by the main thread at the beginning of the 
program, shall:
a. Create thr_count threads
b. Let threadsidentify themselves, i.e., thread knows I am the i-th thread
c. Let the created threads go to wait immediately
2. void mat_vec_mul(float* out, float* vec, float* mat,...): API exposed to do 
Matrix-Vector-Multiplication, signature must be same as sequential version, shall:
a. Assign the mat_vec_mul computation and the parameters (out, vec, mat, ...) to
threads
b. Wake up threads to do the calculation
c. Main thread waits until all threads to complete the calculation
3. void multi_head_attn(float* out, float* q, ...): API exposed to do Multi-Head 
Attention, signature must be same as sequential version, shall:
d. Assign the multi_head_attn computation and the parameters(out, q, ...) to threads
e. Wake up threads to do the calculation
f. Main thread waits until all threads to complete the calculation
4. close_thr_pool(): to be called at the end of the program, shall:
a. Wake up all threads and inform them to collect their system usage and terminate
start
├── common.h # common and helper macro definitions, read through first
├── seq.c # start point, single-thread inference engine
├── parallel_[UID].c # [your task] template including synchronization functions above
├── Makefile # makefile for the project, update [UID] on line 5
└── model.h # GPT model definition, modification not allowed
make prepare # will download if not existed
# or manually download via wget, will force repeated download, not recommended
wget -O model.bin https://huggingface.co/huangs0/smollm/resolve/main/model.bin
wget -O tokenizer.bin https://huggingface.co/huangs0/smollm/resolve/main/tokenizer.bin
make -B seq # -B := --always-make, force rebuild
gcc -o seq seq.c -O2 -lm # or manually make with gcc
b. Wait until all threads exit, and collect and print the system usage of all terminated threads
c. Collect and print the system usage of the main thread as well as the whole program
d. Release all resourcesrelated to multi-threading
5. void* thr_func(void* arg): thread function, shall:
a. Immediately wait for synchronization after initialization
b. Can be woken up by the main thread to work on the assigned computation (i.e., based on the 
task and parameters)
c. After finishing the current workload, inform the main thread and go back to wait
d. Being able to terminate and collect its system usage
It’s worth noticing that you should create one thread pool that can properly handle both mat_vec_mul
and multi_head_attn instead of two pools (one for each) Thus, you may also need to implement the 
following:
6. mat_vec_mul_task_func(int id, ...): function executed by each thread to perform (its
portion of) matrix-vector-multiplication. The first argument is the thread id in the pool (not tid
in OS), and the rest of the signature is left for you to design and implement.
7. multi_head_attn_task_func(int id, ...): function executed by each thread to 
perform (its portion of) multi-head attention. The first argument is the thread id in the pool
(not tid in OS), and the rest of the signature is left for you to design and implement.
More details and reasons behind the design can be found in Appendix b. Context Design.
There might be other synchronization workflows, and we are open to your ideas. However, due to
the large class size, we can only accept submissions following the above design.
Specifications
a. Preparing Environment
Download start code – Download start.zip from the course’s Moodle, and unzip to a folder with:
Download the model files. There are two files required, model.bin for model weight and 
tokenizer.bin for tokenizer. Please use the following instructions to download them:
Compile and run the inference program. The initial seq.c is a complete single-thread (sequential) 
C inference program that can be compiled as follows:
Please use -lm flag to link the Math library and -O2 flag to apply level-2 optimization. Please use -O2
and don’t use other optimization for fairness.
Run the compiled seq program. The program can be executed with an integer specifying the 
random seed and a quoted string specifying the prompt. For simplicity, we fixed it to a single
prompt.
./seq <seed> <prompt> # prompt must quoted with "", recommend using only one prompt 
# examples, more to be found in bench.txt
./seq 42 "What’s Fibonacci Number?"
./seq 42 "Why didn't my parents invite me to their wedding?"
Upon invocation, the program will configure the random seed and begin sentence generation based 
on the provided prompt. The program calls the forward function to call LLM and generate the 
next token, and the printf() with fflush() to print the generated word to the terminal
immediately. A pair of utility time measurement functions time_in_ms will measure the time 
with millisecond accuracy.
Finally, when generation isfinished, the length, average speed, and system usage will be printed:
$ ./seq 42 "What is Fibonacci Number?" 
User: What is Fibonacci Number? 
assistant
A Fibonacci sequence is a sequence of numbers in which each number is the sum of the two 
preceding numbers (1, 1, 2, 3, 5, 8, 13, ...)
......
F(n) = F(n-1) + F(n-2) where F(n) is the nth Fibonacci number. 
length: 266, speed (tok/s): 21.**59
main thread – user: 12.4495 s, system: 0.0240 s
By fixing the same machine (workbench2) and the same random seed, generated text can be 
exactly replicated. For example, the above sample is from the test we conducted on workbench2
with random seed 42. Moreover, achieved tok/s represents the average number of tokens 
generated within a second, and we use it as the metric for speed measurement. Due to the
fluctuating system load from time to time, the speed of the generation will fluctuate around some 
level.
b. Implement the parallel mat_vec_mul and multi_head_attn by multi-threading
Open the parallel_[UID].c, rename [UID] with your UID, and open Makefile, rename [UID] 
with your UID (make sure no blank space after). Implement the thread pool with the workflow 
illustrated in Figure. 4 by completing the required five functions and adding appropriate global 
variables or more functions if needed.
For multi-threading, please use pthread.h. For synchronization, please use either semaphore or 
(mutex locks and conditional variables). You can only modify the code between specified // YOUR 
CODE STARTS HERE at line 28 and // YOUR CODE ENDS HERE at line 88.
Here are some suggestions for the implementation:
1. How to assign new parameters to threads and inform threads to terminate?
i. Via variables in globalspace. Noted that thr_func can access global variables.
ii. Via pointers to parameters. The main thread changes pointers to params before wake-up
worker threads.
2. How to assign new tasks (mat_vec_mul or multi_head_attn)? Via function pointers.
3. Once the main thread invokes mat_vec_mul() or multi_head_attn(), it should wait for all 
computations to complete before returning from the function.
make -B # applicable after renaming [UID]
gcc -o parallel parallel_[UID].c -O2 -lm -lpthread # or manually via gcc
./parallel 4 42 "What is Fibonacci Number?" 
User: What is Fibonacci Number?
assistant
A Fibonacci sequence is a sequence of numbers in which each number is the sum of the two 
preceding numbers (1, 1, 2, 3, 5, 8, 13, ...)
......
F(n) = F(n-1) + F(n-2) where F(n) is the nth Fibonacci number. 
length: 266, speed (tok/s): 38.8889 
Thread 0 has completed - user: 4.9396 s, system: 0.**0 s
Thread 1 has completed - user: 4.7195 s, system: 0.1806 s
Thread 2 has completed - user: 4.6274 s, system: 0.1843 s
Thread 3 has completed - user: 5.0763 s, system: 0.1702 s
main thread - user: 0.6361 s, system: 0.6993 s 
Whole process - user: 20.**** s, system: 1.3757 s
4. For collecting system usage upon finish, please use getrusage.
Your implementation shall be able to be compiled by the following command:
The program accepts three arguments, (1) thr_count , (2) seed, and (3) the prompt (enclosed by 
""). Code related to reading arguments has been provided in parallel_[UID].c. You can use 
thr_count to specify the number of threads to use.
./parallel <thr_count> <seed> <prompt>
If your implementation is correct, under the same random seed, the generated text shall be the
same as the sequential version, but the generation will be faster. Moreover, you should report on
the system usage for each thread respectively (including the main thread) and the whole program. 
For example, this is the output of random seed 42 on workbench2 with 4 threads:
c. Measure the performance and report your findings
Benchmark your implementation (tok/s) on your environment (Linux or WSL or docker or Github
Codespaces) with different thread numbers and report metrics like the following table:
Thread Numbers Speed (tok/s) User Time System Time Use Time/System Time
0 (Sequential)
1
2
4
6
8
10
12
16
Regarding system usage (user time / system time), please report the usage of the whole process 
instead of each thread. Then based on the above table, try to briefly analyze the relation between 
performance and the number of threads and reason the relationship. Submit the table, your analysis, 
and your reasoning in a one-page pdf document.
IMPORTANT: Due to the large number of students this year, please conduct the benchmark on your 
own computer instead of the workbench2 server. The grading of your report is based on your 
analysis and reasoning instead of the speed you achieved. When you’re working on workbench2, 
please be reminded that you have limited maximum allowed thread numbers (128) and process 
(512), so please do not conduct benchmarking on the workbench2 server.
Submission
Submit your program to the Programming # 2 submission page on the course’s Moodle website. 
Name the program to parallel _[UID].c (replace [UID] with your HKU student number). As 
the Moodle site may not accept source code submission, you can compress files to the zip format 
before uploading. Submission checklist:
• Yoursource code parallel_[UID].c, must be self-contained with no dependencies other than
model.h and common.h) and Makefile.
• Your report must include the benchmark table, your analysis, and your reasoning.
• Your GenAI usage report contains GenAI models used (if any), prompts and responses.
• Please do not compress and submit the model and tokenizer binary files. (make clean_bin)
Documentation
1. At the head of the submitted source code, state the:
• File name
• Student’s Name and UID
• Development Platform (Please include compiler version by gcc -v)
• Remark – describe how much you have completed (See Grading Criteria)
2. Inline comments (try to be detailed so that your code can be understood by others easily)
Computer Platform to Use
For this assignment, you can develop and test your program on any Linux platform, but you must 
make sure that the program can correctly execute on the workbench2 Linux server (as the tutors
will use this platform to do the grading). Your program must be written in C and successfully 
compiled with gcc on the server.
It’s worth noticing that the only server for COMP**30 is workbench2.cs.hku.hk, and please do not 
use any CS department server, especially academy11 and academy21, as they are reserved for 
other courses. In case you cannot login to workbench2, please contact the tutor(s) for help.
Grading Criteria
1. Your submission will be primarily tested on the workbench2 server. Make sure that your 
program can be compiled without any errors. Otherwise, we have no way to test your 
submission, and you will get a zero mark.
2. As the tutor will check your source code, please write your program with good readability (i.e., 
with clear code and sufficient comments) so that you will not lose marks due to confusion.
3. You can only use pthread.h and semaphore.h (if needed), using other external libraries
like OpenMP, BLAS or LAPACK will lead to a 0 mark.
Detailed Grading Criteria
• Documentation -1 point if failed to do
• Include necessary documentation to explain the logic of the program
• Include the required student’s info at the beginning of the program
• Report: 1 point
• Measure the performance of the sequential program and your parallel program on your 
computer with various No. of threads (0, 1, 2, 4, 6, 8, 10, 12, 16).
• Briefly analyze the relation between performance and No. of threads, and reason the relation
• Implementation: 11 points evaluated progressively
1. (+3 points = 3 points) Achieve correct result & use multi-threading. Correct means 
generated text of multi-threading and sequential are identical with the same random
seed.
2. (+3 points = 6 points total) All in 1., and achieve >10% acceleration by multi-threading 
compared with sequential under 4 threads. Acceleration measurement is based on tok/s, 
acceleration must result from multi-threading instead of others like compiler (-O3), etc.
3. (+2 points = 8 points total) All in 2., and reuse threads in multi-threading. Reuse threads 
means the number of threads created in the whole program must be constant as 
thr_count.
4. (+3 points = 11 points total) All in 3., and mat_vec_mul and multi_head_attn use the same 
thread pool. Reusing the same thread pool means there’s only one pool and one thread 
group.
Plagiarism
Plagiarism is a very serious offense. Students should understand what constitutes plagiarism, the 
consequences of committing an offense of plagiarism, and how to avoid it. Please note that we may 
request you to explain to us how your program is functioning as well as we may also make use of 
software tools to detect software plagiarism.
GenAI Usage Guide
Following course syllabus, you are allowed to use Generative AI to help completing the assignment, 
and please clearly state the GenAI usage in GenAI Report, including:
• Which GenAI models you used
• Your conversations, including your prompts and the responses
Appendix
a. Parallelism Checking
To parallel by multi-threading, it’s critical to verify if the computation is independent to avoid race 
conditions and the potential use of lock. More specifically, we need to pay special attention to
check and avoid writing to the same memory location while persisting the correctness.
For example, the 1st iteration (outer for-loop) matches the requirement of independence as the 
computation of each row won’t affect others, and the only two writing is out[i] and val. Writing to 
the same out[i] can be avoided by separating i between threads. val can be implemented as stack 
variables for each thread respectively so no writing to the same memory.
Quite the opposite, 2nd iteration (inner for-loop) is not a good example for multi-threading, though 
the only writing is val. If val is implemented as a stack variable, then each thread only holds a part
of the correct answer. If val is implemented as heap variables to be shared among threads, then 
val requires a lock for every writing to avoid race writing, which is obviously costly.
b. Design of Context
A straightforward solution to the above problem is to let thr_func (thread function) do computation
and exit when finished and let original mat_vec_mul or multi_head_attn to create threads and wait 
for threads to exit by pthread_join. This could provide the same synchronization.
However, this implementation is problematic because each function call to mat_vec_mul or 
multi_head_attn will create 𝑛 new threads. Unfortunately, to generate a sentence, GPTs will call 
mat_vec_mul or multi_head_attn thousands of times, so thousands of threads will be created and 
destroyed, which leads to significant overhead to the operation system.
Noted that all the calls to mat_vec_mul function or multi_head_attn are doing the same task, i.e., 
Matrix-Vector-Multiplication, and the only difference between each function call is the parameters. 
Thus, a straightforward optimization is to reuse the threads. In high-level, we can create N threads in 
advance, and when mat_vec_mul or multi_head_attn is called, we assign new parameters for 
thread functions and let threads work on new parameters.
Moreover, it’s worth noting that mat_vec_mul and multi_head_attn are only valid within the 
context, i.e., between init_thr_pool and close_thr_pool, or there are no threads other than the 
main (not yet created or has been destroyed). This kind of context provides efficient and robust 
control over local variables and has been integrated with high-level languages like Python.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:CS540編程代寫、代做Python程序設計
  • 下一篇:代寫cs250編程、代做C++程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                7777精品伊人久久久大香线蕉| 91成人在线精品| 91精品国产手机| a4yy欧美一区二区三区| 国产精品毛片无遮挡高清| 91丨porny丨首页| 欧美四级电影在线观看| 欧美一区二区黄色| 亚洲欧洲99久久| 国产精品理伦片| 国产精品不卡视频| 黄色资源网久久资源365| 在线精品视频一区二区三四| 亚洲一级二级三级| 色婷婷精品大在线视频| 国产一区二区影院| 精品99一区二区| 青青草一区二区三区| 国产大片一区二区| 国产视频一区二区三区在线观看| 夜夜揉揉日日人人青青一国产精品 | 日韩欧美国产电影| 亚洲国产精品天堂| 欧美欧美欧美欧美| 日本道免费精品一区二区三区| 久久男人中文字幕资源站| 久久av中文字幕片| 麻豆免费精品视频| 亚洲国产精品综合小说图片区| 亚洲美女区一区| 亚洲最新视频在线播放| 亚洲国产美国国产综合一区二区| 亚洲色图色小说| 久久久一区二区| 欧美激情自拍偷拍| 亚洲乱码中文字幕| 日本不卡一区二区| 免费在线观看一区二区三区| 国产在线精品不卡| 91黄色激情网站| 日韩三级免费观看| 国产欧美一区二区精品性色| 国产精品成人在线观看| 一区二区三区欧美在线观看| 日韩va欧美va亚洲va久久| 成人一道本在线| 日韩一区二区三区视频| 国产午夜精品一区二区三区嫩草| 中文字幕一区二区三中文字幕| 一区二区三区国产豹纹内裤在线| 精品一区二区三区免费毛片爱| 91在线看国产| 久久影院午夜片一区| 香蕉久久夜色精品国产使用方法 | 日本亚洲三级在线| 全国精品久久少妇| 一本色道久久综合亚洲91| 亚洲精品一线二线三线| 亚洲国产成人91porn| 国产成人av福利| 日韩一区二区视频在线观看| 亚洲成a人在线观看| 91香蕉国产在线观看软件| 久久精品男人的天堂| 精品写真视频在线观看| 欧美精品18+| 日日欢夜夜爽一区| 欧美日韩成人一区二区| 午夜a成v人精品| 欧美男生操女生| 午夜精品在线视频一区| 欧美三级韩国三级日本一级| 亚洲午夜私人影院| 在线不卡一区二区| 热久久久久久久| 久久综合久色欧美综合狠狠| 亚洲一区二区影院| 国产69精品一区二区亚洲孕妇| 91精品国产综合久久精品app| 亚洲国产精品一区二区久久 | 国产成人久久精品77777最新版本| 国产欧美精品一区二区色综合 | 94-欧美-setu| 亚洲高清一区二区三区| 日韩免费高清av| 国产精品一区二区三区乱码| 国产精品不卡在线| 日韩一级视频免费观看在线| 国产综合色视频| 亚洲国产高清不卡| 欧美精品日韩一区| 狠狠色丁香婷综合久久| 亚洲精品中文在线| 久久九九久久九九| 欧美日韩免费观看一区二区三区| 麻豆中文一区二区| 亚洲精品免费看| 久久久久久久久一| 在线精品观看国产| 在线精品亚洲一区二区不卡| 亚洲成va人在线观看| 久久精品噜噜噜成人av农村| 欧美无乱码久久久免费午夜一区| 免费看日韩精品| 欧美激情中文字幕| 91小视频在线免费看| 风流少妇一区二区| 国产一区二区三区视频在线播放| 一区二区高清在线| 亚洲免费伊人电影| 亚洲欧美一区二区不卡| 中文字幕不卡在线观看| 2欧美一区二区三区在线观看视频| 欧美精品v日韩精品v韩国精品v| 色婷婷精品久久二区二区蜜臀av| aaa欧美日韩| 国产精品日产欧美久久久久| 欧美日韩三级在线| 欧美年轻男男videosbes| 欧美日韩免费高清一区色橹橹| 欧美三级中文字| 精品国产乱码久久久久久免费| 色屁屁一区二区| 日韩午夜激情免费电影| 26uuu另类欧美亚洲曰本| 中文字幕第一区综合| 亚洲综合一区二区三区| 日本欧美大码aⅴ在线播放| 国产精品一区在线| 麻豆精品蜜桃视频网站| 国产黄色精品视频| 欧美在线观看视频在线| 久久色在线观看| 精品福利在线导航| 一区二区在线观看免费| 国产精品一色哟哟哟| 日本二三区不卡| 国产片一区二区| 蜜桃视频在线观看一区二区| 精品一区二区三区日韩| 欧美日韩一区视频| 中文字幕一区在线| 欧美国产乱子伦| 日韩专区欧美专区| 色八戒一区二区三区| 国产欧美日本一区视频| 久久精品国产亚洲高清剧情介绍| 色综合av在线| 一区二区三区四区激情| 成人午夜av电影| 91麻豆免费视频| 最新中文字幕一区二区三区| 九九国产精品视频| 亚洲sss视频在线视频| 色综合久久66| 国产精品久久久久影视| 粉嫩av亚洲一区二区图片| 欧美视频精品在线观看| 亚洲第一会所有码转帖| 日本国产一区二区| 一区二区三区欧美| 欧美日本一道本在线视频| 国产欧美精品区一区二区三区| 日韩国产精品大片| 精品日韩一区二区| 国产精品中文字幕欧美| 日本一二三四高清不卡| av电影在线观看完整版一区二区| 国产精品青草综合久久久久99| 99久久国产免费看| 亚洲国产日产av| 欧美成人a视频| 国产成人精品影视| 一区二区在线观看视频在线观看| 91久久精品一区二区| 日韩va亚洲va欧美va久久| 久久久美女毛片| 欧美手机在线视频| 国产风韵犹存在线视精品| 一区二区三区精品视频在线| 欧美一区二区三区免费大片 | 亚洲成a人v欧美综合天堂| 日韩精品一区二| 在线一区二区视频| 粉嫩aⅴ一区二区三区四区五区| 伊人婷婷欧美激情| 国产精品区一区二区三区| 在线成人免费视频| eeuss鲁片一区二区三区| 美女视频黄 久久| 亚洲一区二区三区免费视频| 久久久综合网站| 欧美一区二区三区四区久久| 97精品超碰一区二区三区| 国产精品香蕉一区二区三区| 日本一区二区三区电影| 欧美成人一区二区三区在线观看| 91极品视觉盛宴| 欧美精品99久久久**| 成人动漫一区二区三区|