99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美高清视频一区二区三区在线观看| 亚洲欧美日韩电影| 亚洲激情另类| 亚洲高清资源| 日韩视频―中文字幕| 亚洲一二三区精品| 亚洲一区自拍| 久久综合中文色婷婷| 蜜桃av一区| 欧美三级小说| 国产麻豆视频精品| 黄色成人在线网站| 亚洲精品乱码视频| 午夜视频一区在线观看| 欧美777四色影视在线| 欧美日韩精品一区二区天天拍小说| 国产日韩欧美a| 美女主播视频一区| 国产精品萝li| 亚洲欧洲精品一区二区精品久久久| 一区二区日韩免费看| 午夜精品久久久久久久久久久久久| 老色鬼久久亚洲一区二区| 欧美日韩一区二区三区在线| 国产日韩一区二区三区| 亚洲精品乱码久久久久久蜜桃麻豆 | 国产精品夜夜夜一区二区三区尤| 国产自产在线视频一区| 亚洲日韩成人| 午夜精彩视频在线观看不卡 | 欲香欲色天天天综合和网| 妖精成人www高清在线观看| 久久精品视频免费| 国产精品极品美女粉嫩高清在线| 亚洲国产成人久久综合| 欧美在线1区| 欧美日韩国产专区| 娇妻被交换粗又大又硬视频欧美| 一本色道久久88综合亚洲精品ⅰ| 久久综合久久综合久久| 国产一区二区三区观看| 午夜精品三级视频福利| 欧美午夜精品电影| 亚洲美女网站| 欧美精品成人一区二区在线观看| 国产一本一道久久香蕉| 欧美亚洲在线| 国产欧美一区二区三区在线看蜜臀 | 欧美精品一区二区在线观看 | 日韩视频中午一区| 中文一区二区| 久久亚洲电影| 一本色道久久综合狠狠躁篇的优点| 欧美有码在线视频| 国产日韩亚洲欧美综合| 午夜精品视频网站| 国产乱人伦精品一区二区| 午夜久久黄色| 国产亚洲一区二区精品| 久久久99爱| 亚洲成色www8888| 欧美国产视频在线| 99视频精品免费观看| 欧美三区在线视频| 亚洲欧美日本视频在线观看| 国产欧美精品在线| 久久精品国产99国产精品| 国内精品亚洲| 欧美777四色影视在线| 亚洲激情在线观看| 欧美调教vk| 欧美一区=区| 亚洲高清色综合| 欧美日本国产视频| 亚洲欧美国产不卡| 红桃视频欧美| 欧美久久久久久| 老牛国产精品一区的观看方式| 久久亚洲图片| 激情综合久久| 午夜在线播放视频欧美| 国产精品swag| 久久久国产亚洲精品| 亚洲日本在线观看| 欧美天堂亚洲电影院在线观看 | 亚洲国产日韩欧美在线图片 | 亚洲国产mv| 欧美性猛交一区二区三区精品| 先锋影音一区二区三区| 亚洲国产精品一区二区三区| 欧美三区在线| 免费看的黄色欧美网站| 亚洲欧美卡通另类91av| 亚洲国产精品久久久久秋霞影院 | 欧美日韩午夜精品| 久久精品人人| 亚洲手机在线| 亚洲国产一区二区a毛片| 国产精品视频第一区| 美腿丝袜亚洲色图| 午夜亚洲影视| 日韩一区二区精品视频| 原创国产精品91| 国产亚洲va综合人人澡精品| 欧美日韩精品高清| 蜜桃av久久久亚洲精品| 欧美永久精品| 亚洲资源在线观看| 日韩视频精品在线观看| 国模私拍视频一区| 国产精品日韩在线观看| 欧美美女bb生活片| 美脚丝袜一区二区三区在线观看 | 美女国内精品自产拍在线播放| 亚洲欧美综合国产精品一区| 久久先锋影音| 国内精品伊人久久久久av影院| 午夜精品一区二区三区在线播放| 亚洲永久精品国产| 老司机午夜精品| 欧美不卡高清| 亚洲免费成人av| 欧美日韩亚洲激情| 欧美在线高清| 午夜精品一区二区三区在线| 国产一区二区三区直播精品电影| 国产精品狠色婷| 国产视频一区二区在线观看| 国产一区二区三区直播精品电影| 在线看日韩av| 日韩一级欧洲| 欧美一区二区三区视频免费| 你懂的亚洲视频| 国产精品福利网站| 黄色亚洲精品| 亚洲最新中文字幕| 久久国产欧美| 欧美日韩在线视频首页| 国产亚洲欧美日韩在线一区| 日韩一级大片| 久久久久久久综合色一本| 欧美大片在线看| 国产精品亚洲产品| 亚洲精品日韩欧美| 欧美一区二区三区四区在线观看地址 | 亚洲国产精品久久| 一区二区三区高清| 欧美.com| 国产一区二区三区日韩| 夜夜嗨av色一区二区不卡| 久久久久一区二区| 国产精品九九| 日韩视频免费观看高清完整版| 久久精品视频在线| 国产精品高清一区二区三区| 亚洲第一视频网站| 欧美一区二区三区另类| 欧美日韩免费高清一区色橹橹| 在线观看福利一区| 欧美中文字幕| 国产精品九九久久久久久久| 日韩视频一区二区三区在线播放免费观看 | 1000部精品久久久久久久久| 午夜亚洲伦理| 国产精品欧美在线| 在线一区欧美| 欧美四级电影网站| 最新日韩av| 欧美成人精品一区| 亚洲国产精品久久久久婷婷884 | 亚洲欧洲偷拍精品| 鲁大师成人一区二区三区| 国产一区二区高清不卡| 性欧美暴力猛交69hd| 国产精品久久夜| 亚洲一区二三| 国产精品高潮在线| 亚洲欧美日韩人成在线播放| 国产精品久久久久久久久婷婷| 99riav国产精品| 欧美成人第一页| 91久久国产综合久久| 欧美高清免费| 亚洲美女av黄| 欧美色大人视频| 在线视频亚洲欧美| 国产精品video| 亚洲图片在线观看| 国产精品你懂的| 久久精品123| 伊人精品成人久久综合软件| 另类激情亚洲| 亚洲国产一区二区三区在线播| 欧美大片在线看| 一区二区三区视频观看| 国产精品久久国产精麻豆99网站| 午夜精品免费在线| 伊人久久亚洲影院| 欧美黄色日本| 亚洲男人天堂2024|