99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩视频中午一区| 欧美精品一区二区三区蜜臀 | 久久天堂av综合合色蜜桃网| 国精产品一区一区三区mba桃花| 久久影院午夜论| 国产宾馆实践打屁股91| ...av二区三区久久精品| 欧美三级电影在线观看| 国产精品资源在线| 亚洲色图制服诱惑| 精品国产伦一区二区三区观看体验 | 国产欧美视频在线观看| 色婷婷综合激情| 麻豆视频一区二区| 中文字幕日韩精品一区| 91精品国产综合久久久久| 成人午夜av影视| 日韩电影在线免费| 亚洲免费三区一区二区| 久久久久久久免费视频了| 在线免费不卡电影| 国产精品资源网站| 欧美aaaaaa午夜精品| 亚洲欧洲精品天堂一级| 欧美mv日韩mv亚洲| 成人免费的视频| 国模冰冰炮一区二区| 亚洲国产成人av网| 中文字幕一区二区三中文字幕| 91精品国产综合久久久久| www.欧美精品一二区| 久久se精品一区精品二区| 亚洲图片欧美一区| 亚洲激情自拍偷拍| 一色屋精品亚洲香蕉网站| 久久伊人蜜桃av一区二区| 在线不卡中文字幕| 色狠狠av一区二区三区| 国产成人免费网站| 国产在线精品国自产拍免费| 欧美aaa在线| 蜜臀av性久久久久蜜臀aⅴ四虎| 亚洲综合在线电影| 亚洲精选视频免费看| 亚洲欧美在线另类| 亚洲裸体xxx| 国产精品久久久久影视| 国产精品久久久久久久久免费丝袜 | 亚洲精品国产成人久久av盗摄| 国产色爱av资源综合区| 国产亚洲短视频| 久久午夜电影网| 国产欧美日韩另类一区| 亚洲国产电影在线观看| 欧美高清在线精品一区| 国产日韩精品一区| 国产精品素人一区二区| 亚洲国产高清在线| 亚洲人成影院在线观看| 亚洲女人****多毛耸耸8| 一区二区三区中文字幕电影| 曰韩精品一区二区| 午夜国产精品影院在线观看| 爽好多水快深点欧美视频| 欧美aaa在线| 国产成人免费在线视频| 91香蕉视频黄| 欧美精品777| 久久免费的精品国产v∧| 国产蜜臀97一区二区三区| 亚洲激情六月丁香| 看片的网站亚洲| 成人久久视频在线观看| 欧美日韩亚洲不卡| 精品奇米国产一区二区三区| 中文字幕欧美三区| 亚洲一区二区欧美日韩| 另类调教123区| a级高清视频欧美日韩| 精品视频一区三区九区| 2019国产精品| 亚洲一区免费在线观看| 久久99精品久久久久婷婷| 91在线一区二区| 欧美成人一级视频| 亚洲一区在线观看网站| 国产最新精品精品你懂的| 在线观看av不卡| 国产日韩欧美一区二区三区综合| 亚洲自拍偷拍图区| 国产成人av一区二区三区在线观看| 91色porny| 久久综合九色综合97婷婷| 亚洲一区二区三区四区不卡| 国产激情一区二区三区四区| 欧美日本国产视频| 日韩理论电影院| 国产精品羞羞答答xxdd| 欧美电影一区二区| 亚洲图片另类小说| 国内精品免费在线观看| 欧美三级日本三级少妇99| 久久精子c满五个校花| 日韩精品乱码免费| 色综合色综合色综合| 久久女同精品一区二区| 亚洲成人动漫一区| 一本久道中文字幕精品亚洲嫩 | 久久婷婷一区二区三区| 午夜久久久久久久久久一区二区| 丁香六月久久综合狠狠色| 欧美一区二区视频网站| 亚洲高清三级视频| 91浏览器入口在线观看| 中文字幕日本不卡| a4yy欧美一区二区三区| 日本一区二区三区四区在线视频 | 色狠狠桃花综合| 国产精品久久精品日日| 激情久久五月天| 久久色在线观看| 激情文学综合插| 久久一区二区三区四区| 黄色小说综合网站| 26uuu亚洲综合色| 国产一区亚洲一区| 国产午夜一区二区三区| 国产黄色91视频| 亚洲欧洲日韩在线| 在线亚洲一区二区| 亚洲五码中文字幕| 91精品国产综合久久精品app| 日韩高清欧美激情| 精品av综合导航| 丰满放荡岳乱妇91ww| 18欧美乱大交hd1984| 在线观看一区二区视频| 日韩高清一区二区| 国产性做久久久久久| 色综合天天综合在线视频| 亚洲你懂的在线视频| 精品视频一区三区九区| 免费成人在线影院| 中文字幕国产一区| 色吊一区二区三区| 免费精品视频在线| 久久久一区二区| 色婷婷久久一区二区三区麻豆| 午夜精品久久久久久久99水蜜桃| 91精品国产aⅴ一区二区| 国产精一区二区三区| 综合av第一页| 日韩视频免费观看高清完整版 | 久久99精品视频| 国产精品天天摸av网| 欧美午夜精品理论片a级按摩| 老司机精品视频线观看86| 国产精品久线观看视频| 欧美一区二区三区在| 国产aⅴ综合色| 性做久久久久久| 欧美激情一区二区在线| 欧美日韩一区高清| 成人激情午夜影院| 奇米色777欧美一区二区| 国产精品欧美久久久久一区二区| 欧美日韩亚洲丝袜制服| 高清久久久久久| 天天av天天翘天天综合网色鬼国产 | 欧美亚洲丝袜传媒另类| 国产精品资源网站| 秋霞午夜鲁丝一区二区老狼| 亚洲卡通动漫在线| 久久精品亚洲精品国产欧美| 欧美日韩一区二区三区在线看| 成人丝袜高跟foot| 激情五月婷婷综合网| 偷窥少妇高潮呻吟av久久免费| 国产精品久久久久久久久快鸭| 日韩欧美国产电影| 91麻豆精品国产无毒不卡在线观看 | 日韩综合小视频| 亚洲综合色区另类av| 成人免费在线播放视频| 久久精品一区二区三区四区| 欧美一区二区三区公司| 欧美老女人在线| 欧美天堂一区二区三区| 色婷婷精品久久二区二区蜜臀av| 成人黄页毛片网站| 成人黄色综合网站| av爱爱亚洲一区| 99这里只有精品| 91看片淫黄大片一级| 99精品热视频| 91影视在线播放| 欧洲亚洲国产日韩| 欧美无砖专区一中文字| 精品视频在线免费观看| 91精品一区二区三区久久久久久 |