99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CENG 2310、代寫matlab設計編程
代做CENG 2310、代寫matlab設計編程

時間:2024-10-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BIEN/CENG 2310
MODELING FOR CHEMICAL AND BIOLOGICAL ENGINEERING
HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, FALL 2024
HOMEWORK #3 (DUE OCT. 28, 2024)
1. In this problem, we will simulate the motion of a planet orbiting the sun:
As shown, we place the sun is located at the origin, and the aphelion (the point at which the planet is farthest away from the sun) is located on the positive w**9;-axis. At time w**5;, the planet is
located at the coordinate (w**9;, 𝑦) and its distance from the sun is w**3; = √w**9;2 + 𝑦2. We can model the motion of the planet as a set of two second-order ODEs:
𝑑2w**9; = −𝐺𝑀 ( w**9; ) 𝑑w**5;2 w**3;3
𝑑2𝑦 = −𝐺𝑀 ( 𝑦 ) 𝑑w**5;2 w**3;3
where 𝐺 is the gravitational constant, 𝑀 is the mass of the sun, and the combination 𝐺𝑀 is equal to 2.94 × 10−4 AU3d−2. (For this problem, we will use the time unit of days (d), and the length unit of astronomical units (AU), which is defined as the average distance from the Earth to the sun, about 149.6 × 106 km. ) We will choose the initial location of the planet to be the aphelion, namely, w**9;(w**5; = 0) = 𝑅0, 𝑦(w**5; = 0) = 0. We also know that, since the orbit is an
ellipse, at the aphelion 𝑑w**9;| = 0. The speed of the planet at the aphelion is 𝑑𝑦| = w**7;0. 𝑑w**5; w**5;=0 𝑑w**5; w**5;=0
  
(a) Write a MATLAB program to solve the set of two second-order ODEs as an initial value problem. Allow the user to specify 𝑅0, the distance of the planet from the sun at the aphelion, and w**7;0, the speed of the planet at the aphelion.
The program should stop when the planet returns to the aphelion, and output the period 𝜏, the time it takes to complete one cycle. Your function definition should be:
                   function tau = solarIVP(R0, v0, showplot)
If showplot is set to true, provide a plot that shows the planet (a blue circle) moving around the sun (a red circle) as a movie. The speed at which the planet moves in the movie should be proportional to the speed it actually moves in orbit around the sun.
(b) Suppose we have a planet for which we can measure its distance from the sun at the aphelion, 𝑅0, and the period 𝜏 of its orbit. Solve the boundary value problem to determine its speed at its aphelion w**7;0, using the shooting method. Your function definition should be:
                        function v0 = solarBVP(R0, tau)
There is no need to produce any plot or movie for this part.
Hint: A good initial guess of w**7;0 is √𝐺𝑀/𝑅0. You may call your function from Part (a). Some data to test your program (do NOT expect exact match):
     Planet
Mercury Earth Mars
𝑹𝟎 /𝐀𝐔
0.46670 1.016** 1.6662
𝝉/𝐝
87.969 365.25 687.98
𝒗𝟎 /(𝐀𝐔/𝐝)
0.02269 0.01692 0.01271
                 DELIVERABLES:
Submit your programs solarIVP.m and solarBVP.m. No need to provide any write-up or plot for this question.

2. To help cool down computer chips, heat sinks like the one shown below are often employed to carry away the heat generated more efficiently:
Consider one of the metal pins, represented in the following schematic diagram:
   Convection
where the temperature 𝑇(w**5;, w**9;) is a function of both time and location (measured axially from the root of the pin), 𝛼 is the thermal diffusivity that measures heat conduction in the metal, ҵ**; is a parameter that measures heat convection from the metal pin to the surrounding air, and 𝑇 is the temperature of the air around the pin.
(a) Suppose we are only interested in the steady-state temperature profile of the pin, i.e., when the computer chip has been running continuously for a while, and ejects a constant flux of heat to the pin. The PDE can then be simplified to a second-order ODE for 𝑇(w**9;):
        Hot computer chip at constant
Air at constant temperature 𝑇 𝑎
Metal pin
 𝑎
temperature 𝑇 𝑐
0
Conduction
 𝐿 w**9;
Its temperature profile can be described by the following partial differential equation (PDE):
with the boundary conditions:
𝜕𝑇 = 𝛼 (𝜕2𝑇) − ҵ**;(𝑇 − 𝑇 )
𝜕w**5; 𝜕w**9;2
𝑎
0=𝛼(𝑑2𝑇)−ҵ**;(𝑇−𝑇 )
𝑇(w**9; = 0) = 𝑇 𝑐
𝑑𝑇| =0 𝑑w**9; w**9;=𝐿
𝑑w**9;2
𝑎
where 𝑇 is the computer chip’s temperature, and 𝐿 is the length of the pin. (Here we are 𝑐
assuming that the “tip” of the metal pin is small compared to its length, so that the heat loss at the tip (in the +w**9; direction) would be negligible.)
>
> > >

Solve this boundary value problem by the finite difference method, dividing the pin’s length into 𝑛 equal pieces. Your function definition should be:
function dTdx0 = heatSinkSteady(alpha, beta, Ta, Tc, L, n)
The program should plot the steady-state temperature profile 𝑇 vs. w**9;, and return the value of 𝑑𝑇| . (This value is proportional to the maximum heat rate that can be carried
𝑑w**9; w**9;=0
away by the heat sink while keeping the chip temperature constant.)
(b) Your model is helpful for designing a heat sink. Given that 𝛼 = 0.001 cm2/s, ҵ**; = 0.03 s−1,
𝑇 =300K,𝑇 =340K,whatvalueof𝐿(thelengthofthepin)wouldyouchoose?Explain 𝑎𝑐
your answer.
(c) Solve the PDE for the transient behavior of the heat sink (i.e. without assuming steady
state) using the method of lines. The initial temperature of the whole metal pin is 𝑇 . For 𝑎
the boundary conditions, this time, instead of fixing the computer chip temperature at 𝑇 , 𝑐
we will assume that the heat flux ejected from the computer chip is constant at the steady state value, i.e. the value of 𝑑𝑇| you get from running the program in Part (a). Stop the
𝑑w**9; w**9;=0
program when it reaches steady state, and make two plots, a 3-D plot of 𝑇 vs. w**9; vs. w**5;, and
a “contour plot” of temperature profiles at 10 different time points overlaid on the same plot. Your function definition should be:
function [] = heatSinkTransient(alpha, beta, Ta, Tc, L, n)
 DELIVERABLES:
Submit your programs heatSinkSteady.m for Part (a) and heatSinkTransient.m for Part (c). For both, we will set up the discretization schemes and the boundary conditions in class, to help you get started.
Also submit the write-up for Part (b), which should come with a plot to justify your answer.

3. In this problem we will model the so-called “diffusion disc assay” for measuring the effectiveness of an antibiotic to stop bacterial growth. A small disc with antibiotic is placed in the center of the agar plate with bacterial culture, and over time, the antibiotic will diffuse outwards. If the antibiotic is effective, it will stop the bacteria from growing near the disc, resulting in an inhibition zone. An antibiotic’s effectiveness is defined by the concentration required to inhibit bacterial growth, called the minimum inhibitory concentration (MIC); the lower the MIC, the more effective the antibiotic is. In this assay, the size of the inhibition zone measured at a given time after applying the disc is used to calculate the MIC.
 As shown, the agar plate is circular, and we place the origin at its center. The radius of the plate is 𝑅, and the radius of the antibiotic disc is 𝜀. At time w**5; = 0, we place the antibiotic disc, and the concentration of the antibiotic at w**3; ≤ 𝜀 is assumed to be constant at 𝐶𝑑𝑖w**4;𝑐 at all times. As the antibiotic diffuses outwards, the concentration of the antibiotic, 𝐶(w**5;, w**3;), as a function of time w**5; and radial distance from the center, w**3;, can be modeled by a PDE. At time w**5; = w**5;𝑓, we measure the radius of the inhibition zone, 𝑅𝑧w**0;𝑛Ү**;. The MIC is equal to 𝐶(w**5; = w**5;𝑓,w**3; = 𝑅𝑧w**0;𝑛Ү**;).
(a) By writing a balance equation for the antibiotic for the ring-shaped control volume on the next page, taking the limit of ∆w**3; → 0, and applying Fick’s Law, show that the diffusion can be described by the following PDE:
𝜕𝐶 𝐷(𝜕2𝐶+1𝜕𝐶) 𝜕w**5; = { 𝜕w**3;2 w**3; 𝜕w**3;
0
where 𝐶(w**5;, w**3;) is the concentration of the antibiotic at time w**5; and radial distance w**3; from the
center, 𝐷 is the diffusivity of the antibiotic in agar.
State any assumption(s). Also, write down suitable initial conditions and boundary conditions. Note that for boundary conditions, it makes sense to impose “no flux” boundary conditions at w**3; = 𝑅 (the edge of the plate) and at w**3; = 0 (center of the plate).
  𝑓w**0;w**3; w**3;>𝜀 𝑓w**0;w**3; w**3; ≤ 𝜀
   Hint:
lim (w**9;+∆w**9;)𝑓(w**9;+∆w**9;)−w**9;𝑓(w**9;)= 𝑑 (w**9;𝑓) ∆w**9;→0 ∆w**9; 𝑑w**9;
 
(b) To solve this PDE by the “Method of Lines” in MATLAB, we will divide the space domain 0 ≤ w**3; ≤ 𝑅 equally into 𝑛 pieces of width h, and call the concentrations at the boundary of adjacent pieces 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), as shown below:
Important note: We will not simulate the point at exactly w**3; = 0, since it will result in a division by zero. Instead, we can assume that the concentration there is equal to 𝐶1(w**5;), in line with our “no flux” boundary condition. For our purpose, it will not matter, since that point will have constant concentration at 𝐶𝑑𝑖w**4;𝑐 anyway.
Let 𝐶Ү**; (w**5;) be the rightmost node within the disc, i.e., Ү**;h ≤ 𝜀 . Write down the ODEs for 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), using finite difference approximations for 𝜕2𝐶⁄𝜕w**3;2 and 𝜕𝐶⁄𝜕w**3;.
(c) Complete the provided MATLAB program (antibioticDisc_template.m) to solve this PDE. Theprogramshouldacceptinputparametersof𝐷,𝑅,𝐶𝑑𝑖w**4;𝑐,𝜀,w**5;𝑓,and𝑅𝑧w**0;𝑛Ү**;,plot𝐶(w**5;,w**3;) in a 3D surface plot, and return the MIC, i.e., an estimate as close to 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;) as possible. Rename your program antibioticDisc.m and submit on Canvas.
For your testing, the following are some sample plots (with parameters specified in the titles). Note the asterisk marking the point 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;).
  
  DELIVERABLES:
Submit your type-written or scanned hand-written write-up for Parts (a) and (b).
Submit your program antibioticDisc.m for Part (c). To save you some trouble in plotting, you should start from the antibioticDisc_template.m provided to you, and only add your code where it is marked “% Add code here”.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:AME 209代做、代寫Matlab 程序設計
  • 下一篇:CAN201代做、python語言程序代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产精品美女久久久久久久 | 永久91嫩草亚洲精品人人| 国产精品国产福利国产秒拍 | 中日韩美女免费视频网址在线观看 | 欧美亚州在线观看| 国产精品成人免费视频| 国产精品乱码妇女bbbb| 国产精品亚洲一区二区三区在线| 国产精品性做久久久久久| 国产精品婷婷午夜在线观看| 国产麻豆成人精品| 精品粉嫩aⅴ一区二区三区四区| 激情久久久久| 亚洲美女毛片| 亚洲中无吗在线| 欧美中文字幕在线播放| 免费久久久一本精品久久区| 欧美电影电视剧在线观看| 欧美日韩一区二区在线观看视频| 国产精品国产三级欧美二区| 国产日韩一区二区三区在线播放| 一区二区三区我不卡| 亚洲精品视频一区| 亚洲综合日本| 久久嫩草精品久久久久| 欧美精品在线网站| 国产精品一区三区| 在线观看视频一区二区| 一级日韩一区在线观看| 欧美一区二区高清在线观看| 久久亚洲国产精品一区二区 | 亚洲激情第一区| 9l国产精品久久久久麻豆| 亚洲伊人一本大道中文字幕| 欧美一区二区福利在线| 免费h精品视频在线播放| 欧美成人r级一区二区三区| 欧美日韩国产首页| 国产日韩精品久久| 亚洲人成精品久久久久| 午夜精品久久久久久久99热浪潮| 久久夜色精品国产噜噜av| 欧美日韩另类视频| 国产综合久久久久久鬼色| 99精品福利视频| 久久久久久色| 国产精品久久久久久久9999| 国产一区二区0| 日韩天堂在线视频| 久久精品30| 欧美日韩日韩| 亚洲国产成人porn| 欧美在线视频a| 欧美日韩一二区| 1000精品久久久久久久久 | 欧美日韩精品一区二区天天拍小说| 国产精品最新自拍| 日韩午夜免费视频| 久久久久久色| 国产欧美日韩精品a在线观看| 亚洲欧洲日韩在线| 久久久久久网| 国产伦理一区| 一区二区三区视频在线观看| 欧美一区二区三区在线免费观看 | 欧美黄色一区| 国产精品久久久久一区二区三区| 亚洲欧洲一区二区三区在线观看| 欧美一区二区三区在| 欧美午夜大胆人体| 亚洲精品一区二区三区四区高清| 久久一区二区三区四区| 国产亚洲精品久| 午夜精品久久久久久久白皮肤| 欧美精品一区在线播放| 亚洲成人在线视频网站| 久久久久久网站| 国产亚洲精品久久久久婷婷瑜伽| 亚洲一区二区精品在线| 欧美日韩一区三区四区| 亚洲剧情一区二区| 欧美国内亚洲| 亚洲欧洲99久久| 欧美日韩综合另类| 99re热精品| 欧美日韩成人一区二区三区| 亚洲国产精品嫩草影院| 久久久久久一区| 国内揄拍国内精品少妇国语| 午夜性色一区二区三区免费视频| 99re66热这里只有精品3直播| 欧美诱惑福利视频| 欧美午夜大胆人体| 亚洲尤物在线视频观看| 国产精品av久久久久久麻豆网| 99re66热这里只有精品3直播 | 国产欧美一区二区精品秋霞影院| 亚洲欧美成人一区二区三区| 国产精品日日摸夜夜添夜夜av| 亚洲一区二区不卡免费| 国产精品美女一区二区| 亚洲一区在线免费| 国产精品网红福利| 欧美亚洲日本一区| 国产欧美一级| 久久久91精品国产一区二区精品| 黑人一区二区三区四区五区| 麻豆精品91| 最新国产乱人伦偷精品免费网站 | 国产精品久久99| 亚洲欧洲99久久| 国一区二区在线观看| 久久综合成人精品亚洲另类欧美| 亚洲国产精品va在线看黑人动漫 | 国产一区二区久久久| 久久男女视频| 亚洲精品久久7777| 国产精品福利网| 久久国产手机看片| 亚洲国产精品ⅴa在线观看 | 亚洲精品国产视频| 国产精品大片| 欧美在线三级| 最新成人在线| 国产精品乱码人人做人人爱| 久久精品免费| 日韩视频久久| 国产精品永久入口久久久| 久热成人在线视频| 亚洲午夜激情| 伊人成人在线| 欧美视频在线观看一区二区| 欧美一区二区三区在线观看视频| 亚洲第一在线综合在线| 国产精品第2页| 狂野欧美一区| 亚洲免费视频观看| 亚洲激情第一页| 国产欧美精品一区二区色综合| 男女精品网站| 亚洲永久免费视频| 亚洲福利视频免费观看| 国产精品久久久久久久7电影| 久久久天天操| 亚洲影视在线| 亚洲国产婷婷综合在线精品| 国产精品视频免费| 欧美aaaaaaaa牛牛影院| 欧美亚洲一区二区在线| 亚洲欧洲午夜| 黄色成人在线| 国产精品三上| 欧美精品二区三区四区免费看视频| 羞羞答答国产精品www一本 | 欧美深夜福利| 麻豆九一精品爱看视频在线观看免费| 亚洲私人影院在线观看| 亚洲国产一区二区精品专区| 国产日韩精品视频一区| 欧美日韩国产综合一区二区| 久久一区二区三区国产精品| 亚洲自拍电影| 一本久久精品一区二区| 在线看视频不卡| 国产午夜精品一区二区三区欧美| 欧美视频第二页| 免费久久99精品国产自| 久久精品视频在线看| 亚洲一区二区在线播放| 亚洲乱码精品一二三四区日韩在线| 国产自产2019最新不卡| 国产精品自在欧美一区| 欧美日韩一区二区三区免费 | 亚洲电影一级黄| 国产日韩欧美在线一区| 国产精品成人一区二区网站软件 | 欧美精品在线观看一区二区| 久久综合图片| 久久米奇亚洲| 久久久美女艺术照精彩视频福利播放| 亚洲欧美影院| 亚洲欧美另类中文字幕| 亚洲午夜精品17c| 在线视频欧美一区| 一片黄亚洲嫩模| 亚洲免费av电影| 亚洲人成人99网站| 在线观看日韩欧美| 在线观看亚洲精品| 影音欧美亚洲| 雨宫琴音一区二区在线| 激情欧美一区| 一区二区视频免费在线观看| 狠狠爱www人成狠狠爱综合网| 国产一区二区在线观看免费播放 | 99国产精品| 一区二区高清| 亚洲与欧洲av电影| 亚洲欧美色一区| 欧美在线日韩精品|