99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CENG 2310、代寫matlab設計編程
代做CENG 2310、代寫matlab設計編程

時間:2024-10-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BIEN/CENG 2310
MODELING FOR CHEMICAL AND BIOLOGICAL ENGINEERING
HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, FALL 2024
HOMEWORK #3 (DUE OCT. 28, 2024)
1. In this problem, we will simulate the motion of a planet orbiting the sun:
As shown, we place the sun is located at the origin, and the aphelion (the point at which the planet is farthest away from the sun) is located on the positive w**9;-axis. At time w**5;, the planet is
located at the coordinate (w**9;, 𝑦) and its distance from the sun is w**3; = √w**9;2 + 𝑦2. We can model the motion of the planet as a set of two second-order ODEs:
𝑑2w**9; = −𝐺𝑀 ( w**9; ) 𝑑w**5;2 w**3;3
𝑑2𝑦 = −𝐺𝑀 ( 𝑦 ) 𝑑w**5;2 w**3;3
where 𝐺 is the gravitational constant, 𝑀 is the mass of the sun, and the combination 𝐺𝑀 is equal to 2.94 × 10−4 AU3d−2. (For this problem, we will use the time unit of days (d), and the length unit of astronomical units (AU), which is defined as the average distance from the Earth to the sun, about 149.6 × 106 km. ) We will choose the initial location of the planet to be the aphelion, namely, w**9;(w**5; = 0) = 𝑅0, 𝑦(w**5; = 0) = 0. We also know that, since the orbit is an
ellipse, at the aphelion 𝑑w**9;| = 0. The speed of the planet at the aphelion is 𝑑𝑦| = w**7;0. 𝑑w**5; w**5;=0 𝑑w**5; w**5;=0
  
(a) Write a MATLAB program to solve the set of two second-order ODEs as an initial value problem. Allow the user to specify 𝑅0, the distance of the planet from the sun at the aphelion, and w**7;0, the speed of the planet at the aphelion.
The program should stop when the planet returns to the aphelion, and output the period 𝜏, the time it takes to complete one cycle. Your function definition should be:
                   function tau = solarIVP(R0, v0, showplot)
If showplot is set to true, provide a plot that shows the planet (a blue circle) moving around the sun (a red circle) as a movie. The speed at which the planet moves in the movie should be proportional to the speed it actually moves in orbit around the sun.
(b) Suppose we have a planet for which we can measure its distance from the sun at the aphelion, 𝑅0, and the period 𝜏 of its orbit. Solve the boundary value problem to determine its speed at its aphelion w**7;0, using the shooting method. Your function definition should be:
                        function v0 = solarBVP(R0, tau)
There is no need to produce any plot or movie for this part.
Hint: A good initial guess of w**7;0 is √𝐺𝑀/𝑅0. You may call your function from Part (a). Some data to test your program (do NOT expect exact match):
     Planet
Mercury Earth Mars
𝑹𝟎 /𝐀𝐔
0.46670 1.016** 1.6662
𝝉/𝐝
87.969 365.25 687.98
𝒗𝟎 /(𝐀𝐔/𝐝)
0.02269 0.01692 0.01271
                 DELIVERABLES:
Submit your programs solarIVP.m and solarBVP.m. No need to provide any write-up or plot for this question.

2. To help cool down computer chips, heat sinks like the one shown below are often employed to carry away the heat generated more efficiently:
Consider one of the metal pins, represented in the following schematic diagram:
   Convection
where the temperature 𝑇(w**5;, w**9;) is a function of both time and location (measured axially from the root of the pin), 𝛼 is the thermal diffusivity that measures heat conduction in the metal, ҵ**; is a parameter that measures heat convection from the metal pin to the surrounding air, and 𝑇 is the temperature of the air around the pin.
(a) Suppose we are only interested in the steady-state temperature profile of the pin, i.e., when the computer chip has been running continuously for a while, and ejects a constant flux of heat to the pin. The PDE can then be simplified to a second-order ODE for 𝑇(w**9;):
        Hot computer chip at constant
Air at constant temperature 𝑇 𝑎
Metal pin
 𝑎
temperature 𝑇 𝑐
0
Conduction
 𝐿 w**9;
Its temperature profile can be described by the following partial differential equation (PDE):
with the boundary conditions:
𝜕𝑇 = 𝛼 (𝜕2𝑇) − ҵ**;(𝑇 − 𝑇 )
𝜕w**5; 𝜕w**9;2
𝑎
0=𝛼(𝑑2𝑇)−ҵ**;(𝑇−𝑇 )
𝑇(w**9; = 0) = 𝑇 𝑐
𝑑𝑇| =0 𝑑w**9; w**9;=𝐿
𝑑w**9;2
𝑎
where 𝑇 is the computer chip’s temperature, and 𝐿 is the length of the pin. (Here we are 𝑐
assuming that the “tip” of the metal pin is small compared to its length, so that the heat loss at the tip (in the +w**9; direction) would be negligible.)
>
> > >

Solve this boundary value problem by the finite difference method, dividing the pin’s length into 𝑛 equal pieces. Your function definition should be:
function dTdx0 = heatSinkSteady(alpha, beta, Ta, Tc, L, n)
The program should plot the steady-state temperature profile 𝑇 vs. w**9;, and return the value of 𝑑𝑇| . (This value is proportional to the maximum heat rate that can be carried
𝑑w**9; w**9;=0
away by the heat sink while keeping the chip temperature constant.)
(b) Your model is helpful for designing a heat sink. Given that 𝛼 = 0.001 cm2/s, ҵ**; = 0.03 s−1,
𝑇 =300K,𝑇 =340K,whatvalueof𝐿(thelengthofthepin)wouldyouchoose?Explain 𝑎𝑐
your answer.
(c) Solve the PDE for the transient behavior of the heat sink (i.e. without assuming steady
state) using the method of lines. The initial temperature of the whole metal pin is 𝑇 . For 𝑎
the boundary conditions, this time, instead of fixing the computer chip temperature at 𝑇 , 𝑐
we will assume that the heat flux ejected from the computer chip is constant at the steady state value, i.e. the value of 𝑑𝑇| you get from running the program in Part (a). Stop the
𝑑w**9; w**9;=0
program when it reaches steady state, and make two plots, a 3-D plot of 𝑇 vs. w**9; vs. w**5;, and
a “contour plot” of temperature profiles at 10 different time points overlaid on the same plot. Your function definition should be:
function [] = heatSinkTransient(alpha, beta, Ta, Tc, L, n)
 DELIVERABLES:
Submit your programs heatSinkSteady.m for Part (a) and heatSinkTransient.m for Part (c). For both, we will set up the discretization schemes and the boundary conditions in class, to help you get started.
Also submit the write-up for Part (b), which should come with a plot to justify your answer.

3. In this problem we will model the so-called “diffusion disc assay” for measuring the effectiveness of an antibiotic to stop bacterial growth. A small disc with antibiotic is placed in the center of the agar plate with bacterial culture, and over time, the antibiotic will diffuse outwards. If the antibiotic is effective, it will stop the bacteria from growing near the disc, resulting in an inhibition zone. An antibiotic’s effectiveness is defined by the concentration required to inhibit bacterial growth, called the minimum inhibitory concentration (MIC); the lower the MIC, the more effective the antibiotic is. In this assay, the size of the inhibition zone measured at a given time after applying the disc is used to calculate the MIC.
 As shown, the agar plate is circular, and we place the origin at its center. The radius of the plate is 𝑅, and the radius of the antibiotic disc is 𝜀. At time w**5; = 0, we place the antibiotic disc, and the concentration of the antibiotic at w**3; ≤ 𝜀 is assumed to be constant at 𝐶𝑑𝑖w**4;𝑐 at all times. As the antibiotic diffuses outwards, the concentration of the antibiotic, 𝐶(w**5;, w**3;), as a function of time w**5; and radial distance from the center, w**3;, can be modeled by a PDE. At time w**5; = w**5;𝑓, we measure the radius of the inhibition zone, 𝑅𝑧w**0;𝑛Ү**;. The MIC is equal to 𝐶(w**5; = w**5;𝑓,w**3; = 𝑅𝑧w**0;𝑛Ү**;).
(a) By writing a balance equation for the antibiotic for the ring-shaped control volume on the next page, taking the limit of ∆w**3; → 0, and applying Fick’s Law, show that the diffusion can be described by the following PDE:
𝜕𝐶 𝐷(𝜕2𝐶+1𝜕𝐶) 𝜕w**5; = { 𝜕w**3;2 w**3; 𝜕w**3;
0
where 𝐶(w**5;, w**3;) is the concentration of the antibiotic at time w**5; and radial distance w**3; from the
center, 𝐷 is the diffusivity of the antibiotic in agar.
State any assumption(s). Also, write down suitable initial conditions and boundary conditions. Note that for boundary conditions, it makes sense to impose “no flux” boundary conditions at w**3; = 𝑅 (the edge of the plate) and at w**3; = 0 (center of the plate).
  𝑓w**0;w**3; w**3;>𝜀 𝑓w**0;w**3; w**3; ≤ 𝜀
   Hint:
lim (w**9;+∆w**9;)𝑓(w**9;+∆w**9;)−w**9;𝑓(w**9;)= 𝑑 (w**9;𝑓) ∆w**9;→0 ∆w**9; 𝑑w**9;
 
(b) To solve this PDE by the “Method of Lines” in MATLAB, we will divide the space domain 0 ≤ w**3; ≤ 𝑅 equally into 𝑛 pieces of width h, and call the concentrations at the boundary of adjacent pieces 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), as shown below:
Important note: We will not simulate the point at exactly w**3; = 0, since it will result in a division by zero. Instead, we can assume that the concentration there is equal to 𝐶1(w**5;), in line with our “no flux” boundary condition. For our purpose, it will not matter, since that point will have constant concentration at 𝐶𝑑𝑖w**4;𝑐 anyway.
Let 𝐶Ү**; (w**5;) be the rightmost node within the disc, i.e., Ү**;h ≤ 𝜀 . Write down the ODEs for 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), using finite difference approximations for 𝜕2𝐶⁄𝜕w**3;2 and 𝜕𝐶⁄𝜕w**3;.
(c) Complete the provided MATLAB program (antibioticDisc_template.m) to solve this PDE. Theprogramshouldacceptinputparametersof𝐷,𝑅,𝐶𝑑𝑖w**4;𝑐,𝜀,w**5;𝑓,and𝑅𝑧w**0;𝑛Ү**;,plot𝐶(w**5;,w**3;) in a 3D surface plot, and return the MIC, i.e., an estimate as close to 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;) as possible. Rename your program antibioticDisc.m and submit on Canvas.
For your testing, the following are some sample plots (with parameters specified in the titles). Note the asterisk marking the point 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;).
  
  DELIVERABLES:
Submit your type-written or scanned hand-written write-up for Parts (a) and (b).
Submit your program antibioticDisc.m for Part (c). To save you some trouble in plotting, you should start from the antibioticDisc_template.m provided to you, and only add your code where it is marked “% Add code here”.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:AME 209代做、代寫Matlab 程序設計
  • 下一篇:CAN201代做、python語言程序代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美天堂一区二区三区| 色呦呦网站一区| 欧美亚洲国产一区二区三区va | 成人高清免费观看| 精品美女一区二区| 精品制服美女久久| 欧美二区乱c少妇| 裸体一区二区三区| 中文字幕免费不卡| 欧美日韩日本视频| 久久99精品久久久久久久久久久久| 欧美成人vr18sexvr| 成人丝袜高跟foot| 日韩电影免费一区| 国产精品狼人久久影院观看方式| 色婷婷综合久久久中文字幕| 亚洲不卡av一区二区三区| 久久综合视频网| 在线观看区一区二| jvid福利写真一区二区三区| 秋霞电影网一区二区| 国产精品久久久久一区二区三区| 在线观看日产精品| 97精品久久久午夜一区二区三区| 青青青爽久久午夜综合久久午夜| 中文字幕在线一区| 久久久精品人体av艺术| 51午夜精品国产| 3atv一区二区三区| 欧美日韩一区二区在线观看视频| 91蝌蚪porny成人天涯| 国产成人精品亚洲午夜麻豆| 奇米影视一区二区三区小说| 亚洲制服丝袜一区| 日韩电影在线免费观看| 免费观看久久久4p| 国产一区二区在线免费观看| 麻豆精品久久精品色综合| 麻豆久久一区二区| 久久精品国产亚洲a| 国内精品不卡在线| 成人午夜在线免费| 99国产精品久久久久久久久久久 | 成人aa视频在线观看| 岛国精品一区二区| 91久久免费观看| 一道本成人在线| 日韩视频免费直播| 中文字幕一区二区在线观看| 亚洲人成小说网站色在线| 一卡二卡三卡日韩欧美| 日本亚洲三级在线| av影院午夜一区| 日韩欧美成人激情| 亚洲精品国产成人久久av盗摄| 性欧美疯狂xxxxbbbb| 国产一区二区三区免费播放| 91麻豆国产在线观看| 久久亚洲精品国产精品紫薇| 亚洲欧美怡红院| 精品一区二区三区免费播放| 91浏览器在线视频| 国产精品美女久久久久久久网站| 日韩国产欧美三级| 欧美视频你懂的| 亚洲一二三级电影| 欧美天堂一区二区三区| 亚洲九九爱视频| 99久久精品情趣| 国产精品毛片久久久久久| 久久99久久精品欧美| 欧美日韩一区精品| 日本午夜一本久久久综合| 欧美高清性hdvideosex| 狠狠网亚洲精品| 日韩一区精品字幕| 欧美一区二区视频在线观看| 婷婷中文字幕综合| 欧美日韩激情在线| 视频一区国产视频| 欧美美女一区二区三区| 亚洲第一二三四区| 日韩视频一区在线观看| 国产成人啪午夜精品网站男同| 国产精品国产三级国产aⅴ入口| 99国产精品久久久| 日韩福利电影在线| www国产成人| 一本色道久久综合亚洲精品按摩| 国产精品久久99| 日韩欧美中文字幕制服| 9久草视频在线视频精品| 一区二区三区高清不卡| 久久众筹精品私拍模特| 91一区二区在线| 寂寞少妇一区二区三区| 亚洲国产中文字幕在线视频综合| 欧美一二三四在线| 欧美天堂一区二区三区| 99国产精品久久久久| 极品瑜伽女神91| 麻豆专区一区二区三区四区五区| 亚洲视频图片小说| 国产婷婷一区二区| 国产亚洲欧美色| 欧美精品一区二区在线播放| 欧美日韩亚洲另类| 欧美午夜寂寞影院| 欧美日韩中字一区| 精品视频资源站| 欧美精品1区2区3区| 91精品国产综合久久精品麻豆 | 日韩一级片在线观看| 欧美日韩国产综合草草| 日本精品一级二级| 欧美精选午夜久久久乱码6080| 欧美日韩一区二区欧美激情| 日本道色综合久久| 在线不卡欧美精品一区二区三区| 欧美午夜一区二区三区| 在线观看av一区二区| 欧美无乱码久久久免费午夜一区| 欧美一级一级性生活免费录像| 777xxx欧美| 国产精品美女www爽爽爽| 亚洲一卡二卡三卡四卡五卡| 天天综合色天天| 国产黄色91视频| 一本久道中文字幕精品亚洲嫩| 欧美一区二区在线看| 日本一区免费视频| 日本v片在线高清不卡在线观看| 国产黄色成人av| 欧美大片日本大片免费观看| 日韩一区日韩二区| 成人免费三级在线| 精品久久久久久久久久久院品网 | 日韩欧美国产午夜精品| 一区二区三区在线视频观看58| 美女一区二区视频| 欧美性一区二区| 亚洲精品少妇30p| 91福利资源站| 亚洲欧洲中文日韩久久av乱码| 国模冰冰炮一区二区| 精品免费视频一区二区| 日韩专区中文字幕一区二区| 欧美男生操女生| 男女男精品视频网| 欧美xxxxx牲另类人与| 性做久久久久久| 欧美电视剧在线观看完整版| 视频一区欧美精品| 久久午夜色播影院免费高清| 国产精品一区免费在线观看| 日韩欧美国产一区二区三区| 国产美女一区二区| 久久精品视频免费观看| 99久久99久久精品免费观看| 8v天堂国产在线一区二区| 亚洲一区在线观看视频| 26uuu亚洲婷婷狠狠天堂| 日欧美一区二区| 精品国产乱码久久久久久久久| 国产经典欧美精品| 亚洲国产精品久久不卡毛片| 欧美剧情片在线观看| 国内外成人在线视频| 一区二区三区精品久久久| 欧美成人精品3d动漫h| 日本系列欧美系列| 国产精品美女一区二区在线观看| 9人人澡人人爽人人精品| 看电视剧不卡顿的网站| 亚洲少妇中出一区| 欧美一区二区二区| 色吧成人激情小说| 国产乱码精品1区2区3区| 天天色综合天天| 亚洲资源在线观看| 中文字幕一区二区三区在线播放| 欧美另类变人与禽xxxxx| 欧美日韩中字一区| 色婷婷国产精品| 国产91精品一区二区麻豆网站| 欧美aⅴ一区二区三区视频| 亚洲天堂精品在线观看| 精品国产精品网麻豆系列| 日韩一区二区三区av| 欧美在线一二三四区| 欧美午夜不卡在线观看免费| 国产精品一色哟哟哟| 国内精品免费在线观看| 国模冰冰炮一区二区| 久久精品国产一区二区三区免费看| 日韩电影在线一区| 天天色综合天天| 国产在线精品免费av| 美女mm1313爽爽久久久蜜臀| 国产一区二区在线免费观看|