99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

FINM8006代寫、代做Python編程設計
FINM8006代寫、代做Python編程設計

時間:2024-10-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



FINM8006 Advanced Investment Assignment
Due 11/10/2024
1 Chinese A-Share Market
Stock market in China is often said to be heavily inffuenced by individual traders.
Size and liquidity therefore are long suspected to play important roles in Chinese
A-share market. Mutual fund industry has been developing in the recent years,
especially after 2016. In this exercise, we will analyze the Chinese market from
2012 to 2022.
1.1 Data Description
The data folder contains two zipped (.gz) csv ffles.
• monthly_returns_cn.csv.gz contains monthly stock and market returns
for stocks on Chinese market from 2010 to 2022.
– stkcd: stock code
– month: date of monthly end date
– ret: stock return
– mktret: market return
– rf: risk free rate
• monthly_characteristics_cn.csv.gz contains ffrm characteristics of
the shares traded each month from the market and earnings announcements.

stkcd: stock code
– priormonth: end of the month date when characteristics information
is known
– market_value: market cap (value) of stock in the month
– ep: EP ratio calculated as earnings divided by market cap
– amihud: average Amihud measure in a month. Amihud measure is a
measure of stock illiquidity, calculated as stock price change divided
by trading volume. The higher the value the lower a stock’s liquidity.
1.2 Your Tasks
11.2.1 Mean Variance
Suppose you inherited an amount of money (M) at the end of year 2020 and want
to invest it in a basket of stocks and risk free asset at the beginning of 2021.
stkcds of the stocks in your basket are ['600519', '002594', '002415',
'000333'] and the risk free rate is known at the beginning of 2021. You have
CRRA utility function of risk aversion    = 3. You estimate the return characteristics
 using data in the last 3 years prior to 2021.
1. What is your optimal share of M to invest in the stock basket?
2. What is the optimal share of M to invest in each stock if you decide to do
mean-variance investing?
3. What are the returns you expected to get and you will actually get (from
M, consider only the stock returns) in January 2021?
4. If you compose your stocks in the basket based on their relative market
caps at the end of 2020, what return (from M, consider only the stock
returns) in January 2021 will you get?
1.2.2 CAPM BETA
For each stock and month starting from January 2012, use the prior 24 month
to estimate CAPM   . You will require a ffrm-month to have at least 12 months
of prior data to estimate, otherwise the ffrm-month will be dropped from the
portfolio. From now on, your data will be ffrms with legitimate beta and other
characteristics information.
For each month starting from 2012, form 10 portfolios according to their CAPM
  , then plot the average realized monthly excess return against the average   
for the 10 portfolios. Add the CAPM line also to your graph. Please comment
on the graph you produce, what kind of the stocks are likely to be overvalued
or undervalued.
1.2.3 Size and EP Ratio
For each month starting from 2012, form 25 (5x5) portfolios by sorting stocks
according to size (proxied by market value) and EP ratio. Stock characteristics
in a month is its characteristics in the prior month. Calculate the value-weighted
returns and betas. Produce a within-size plot and a within-PE plot for the 25
portfolios by plotting mean excess return against CAPM as in the lecture notes.
Comment on your graphs.
1.2.3.1 Size and EP factors
You will divide your stocks into 6 (2X3) portfolios according to size and EP.
Returns in the portfolios are value-weighted. Then you will form your SMB
(size) factor by longing the equally-weighted portfolios of small stock portfolios
2and shorting the equally-weighted portfolios of big stock portfolios, form your
HML (EP) factor by longing the equally-weighted portfolios of high EP stock
portfolios and shorting the equally-weighted portfolios of low EP stock portfolios.
Plot the cumulative factor returns along with the cumulative market excess
return.
Run multi-factor models of market excess return, SMB and HML for each of the
25 portfolios you formed earlier, and get the factor loading. Produce within-size
and with-EP plots by plotting average portfolio excess returns against average
model predicted excess returns. You get model predicted excess returns from
factor loading and mean factor returns. Has the multi-factor loading improved
the model prediction?
1.2.4 Liquidity Premium
Is there liquidity premium and What is its dynamics? Let’s examine. In addition
 to the 2X3 sorting, we also sort independently into 5 portfolios according
to amihud. That is, we sort stockings into 2X3X5 portfolios of size, EP and
liquidity. Again, portfolio returns are value weighted. Finally, we form liquidity
 premium by longing the equally-weighted portfolios of high illiquidity
stock portfolios and shorting the equally-weighted portfolios of low illiquidity
stock portfolios. Calculate the time-series of liquidity premium, and plot the
cumulative returns of the premium. Comment on the graph you get.
1.3 Python Notes
You can use pandas to read zipped csv ffles. Notice that stkcd is a str, and
month is a date, they need to be speciffed in reading to have the correct data
type, such as the following:
monthly_returns = pd.read_csv('monthly_returns_cn.csv.gz',
parse_dates=['month'], dtype={'stkcd':'str'})
You will need statsmodels for regression. For rolling regression, you can use
a for loop as the backtesting workshop, or use RollingOLS in statsmodels.
To calculate things by group, the groupby method of pandas will be useful.
You can use apply following groupby to get results in a new data frame, or use
transform to add the results to the existing dataframe. Please see lecture notes
and pandas documentation online for details.
qcut method of pandas is handy for ffnding the cutoff and sorting dataframe
into groups. The following lambda function, when applied to x, put 10 group
labels, size0…size9 according to x.
lambda x: pd.qcut(x, 10, labels=['size'+str(x) for x in range(10)], retbins=False)
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:代寫SCIE1000、代做Python程序設計
  • 下一篇:CS439編程代寫、代做Java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美不卡123| 国产欧美精品区一区二区三区| 丰满亚洲少妇av| 99久久国产综合精品麻豆| 欧美三级在线看| 国产无一区二区| 中文字幕久久午夜不卡| 亚洲第一电影网| 国产一区二区看久久| av亚洲精华国产精华| 欧美福利视频一区| 亚洲日本在线看| 国产激情视频一区二区在线观看 | 一区二区国产视频| 麻豆精品精品国产自在97香蕉| 波多野结衣一区二区三区| 日韩丝袜情趣美女图片| 亚洲在线视频一区| 欧美又粗又大又爽| 国产欧美日韩不卡| 国模冰冰炮一区二区| 日韩欧美123| 国产成人免费视频| 国产女同互慰高潮91漫画| 久久99国产精品尤物| 色婷婷久久久亚洲一区二区三区| 久久久久综合网| 亚洲 欧美综合在线网络| 欧洲一区二区三区在线| 成人欧美一区二区三区白人| 国产一区二区三区视频在线播放 | av一二三不卡影片| 国产精品乱码人人做人人爱 | 欧美美女一区二区在线观看| 偷窥少妇高潮呻吟av久久免费| 久久国产三级精品| 欧美一级免费观看| 亚洲va中文字幕| 日韩精品中文字幕在线不卡尤物| 蜜乳av一区二区| 久久色在线观看| 成人精品高清在线| 五月综合激情网| 国产精品久久久久久久久久免费看| av在线不卡观看免费观看| 亚洲国产视频直播| 久久久久久电影| 欧美在线观看视频在线| 成人污污视频在线观看| 日本视频中文字幕一区二区三区| 国产精品网站在线| 国产午夜久久久久| 国产日韩欧美不卡在线| 日韩三级.com| 91精品在线免费观看| 久久精品国产精品亚洲综合| 亚洲国产精品久久久久婷婷884| 久久久三级国产网站| 91官网在线观看| 欧美亚洲国产bt| 91九色02白丝porn| 欧美另类videos死尸| 9191精品国产综合久久久久久 | 97se亚洲国产综合自在线观| 国产精品一区不卡| 国产美女av一区二区三区| 国内精品久久久久影院薰衣草| 亚洲欧美日韩小说| 一区二区欧美国产| 中文字幕av免费专区久久| 欧美日韩成人综合| 亚洲国产精品欧美一二99| 日韩一区二区三区电影| 天天综合天天综合色| 日韩丝袜情趣美女图片| 国产成人精品一区二区三区四区| 中文字幕色av一区二区三区| 91麻豆精品在线观看| 午夜国产精品一区| 国产三级精品三级在线专区| 国产自产视频一区二区三区| 久久久久久夜精品精品免费| 毛片av一区二区三区| 欧美不卡一区二区三区四区| 一本色道a无线码一区v| 成人免费毛片aaaaa**| 一级精品视频在线观看宜春院 | 亚洲免费电影在线| 久久先锋影音av鲁色资源网| 欧美精品在线一区二区三区| av中文字幕一区| 国产成人av一区| 韩国欧美国产1区| 激情另类小说区图片区视频区| 亚洲国产日韩在线一区模特| 亚洲欧美一区二区三区国产精品| 精品国产精品网麻豆系列| 欧美mv日韩mv国产网站| 日韩色在线观看| 日韩美一区二区三区| 欧美视频三区在线播放| 男女激情视频一区| 亚洲成人免费看| 精品国产乱码久久久久久闺蜜 | 日韩欧美你懂的| 国产欧美精品一区二区三区四区 | 一本色道久久综合精品竹菊| 成人国产在线观看| 成人综合在线视频| 国产精品88888| 紧缚捆绑精品一区二区| 亚洲gay无套男同| 一区二区高清视频在线观看| 亚洲婷婷国产精品电影人久久| 国产午夜精品一区二区三区四区| 久久人人97超碰com| 中文在线免费一区三区高中清不卡| 2023国产一二三区日本精品2022| 国产精品视频九色porn| 国产精品久久毛片av大全日韩| 欧美国产1区2区| 成人欧美一区二区三区1314| 国产精品家庭影院| 国产欧美精品一区二区三区四区| 精品国产乱码久久久久久浪潮 | 久久 天天综合| 色婷婷综合久久久久中文一区二区 | 欧美日韩成人激情| 欧美午夜电影在线播放| 精品久久久久av影院| 久久久午夜电影| 午夜电影久久久| 精品一二三四在线| 成人国产精品视频| 精品粉嫩aⅴ一区二区三区四区| 亚洲欧美电影一区二区| 久久99久久精品| 欧美成人性战久久| 激情综合色综合久久| 日韩欧美国产高清| 麻豆成人综合网| 精品国产自在久精品国产| 奇米888四色在线精品| 91久久精品国产91性色tv| 国产日韩欧美精品电影三级在线| 亚洲美女区一区| 国产不卡免费视频| 久久一夜天堂av一区二区三区| 亚洲成a人片在线不卡一二三区 | 亚洲激情一二三区| 欧美一区二区三区视频免费播放 | 成人精品电影在线观看| 亚洲午夜精品17c| 国产精品毛片大码女人| 丁香啪啪综合成人亚洲小说 | 亚洲欧美国产高清| 欧美日韩一区二区三区高清| 亚洲国产精品一区二区久久恐怖片| 99久久精品国产导航| 亚洲午夜久久久久久久久电影院| 欧美一区二区二区| 色综合色综合色综合色综合色综合 | 国产精品久线在线观看| 日本亚洲欧美天堂免费| 2021久久国产精品不只是精品| 91无套直看片红桃| 麻豆成人久久精品二区三区红| 亚洲伦理在线精品| 99久久精品国产导航| 久久综合狠狠综合久久综合88| 天天av天天翘天天综合网色鬼国产 | 成人在线视频一区| 美女mm1313爽爽久久久蜜臀| 亚洲另类中文字| 夜夜嗨av一区二区三区中文字幕| 国产精品久久久久久久蜜臀| 亚洲激情在线播放| 中文字幕一区二区日韩精品绯色| 国产欧美一区视频| 高清beeg欧美| 久久蜜臀中文字幕| 蜜臀av一级做a爰片久久| 美美哒免费高清在线观看视频一区二区 | 678五月天丁香亚洲综合网| 欧美videos大乳护士334| 偷偷要91色婷婷| 国产91高潮流白浆在线麻豆| 日韩欧美一区二区三区在线| 亚洲第一福利一区| 91网站最新网址| 日日骚欧美日韩| 精品1区2区在线观看| 国产经典欧美精品| 久久久国产一区二区三区四区小说| 亚洲成人av电影在线| 欧美视频在线播放| 国产乱码精品一区二区三区五月婷| 欧美精品高清视频| 国产婷婷精品av在线| 国产精品资源站在线|