99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

FINM8006代寫、代做Python編程設計
FINM8006代寫、代做Python編程設計

時間:2024-10-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



FINM8006 Advanced Investment Assignment
Due 11/10/2024
1 Chinese A-Share Market
Stock market in China is often said to be heavily inffuenced by individual traders.
Size and liquidity therefore are long suspected to play important roles in Chinese
A-share market. Mutual fund industry has been developing in the recent years,
especially after 2016. In this exercise, we will analyze the Chinese market from
2012 to 2022.
1.1 Data Description
The data folder contains two zipped (.gz) csv ffles.
• monthly_returns_cn.csv.gz contains monthly stock and market returns
for stocks on Chinese market from 2010 to 2022.
– stkcd: stock code
– month: date of monthly end date
– ret: stock return
– mktret: market return
– rf: risk free rate
• monthly_characteristics_cn.csv.gz contains ffrm characteristics of
the shares traded each month from the market and earnings announcements.

stkcd: stock code
– priormonth: end of the month date when characteristics information
is known
– market_value: market cap (value) of stock in the month
– ep: EP ratio calculated as earnings divided by market cap
– amihud: average Amihud measure in a month. Amihud measure is a
measure of stock illiquidity, calculated as stock price change divided
by trading volume. The higher the value the lower a stock’s liquidity.
1.2 Your Tasks
11.2.1 Mean Variance
Suppose you inherited an amount of money (M) at the end of year 2020 and want
to invest it in a basket of stocks and risk free asset at the beginning of 2021.
stkcds of the stocks in your basket are ['600519', '002594', '002415',
'000333'] and the risk free rate is known at the beginning of 2021. You have
CRRA utility function of risk aversion    = 3. You estimate the return characteristics
 using data in the last 3 years prior to 2021.
1. What is your optimal share of M to invest in the stock basket?
2. What is the optimal share of M to invest in each stock if you decide to do
mean-variance investing?
3. What are the returns you expected to get and you will actually get (from
M, consider only the stock returns) in January 2021?
4. If you compose your stocks in the basket based on their relative market
caps at the end of 2020, what return (from M, consider only the stock
returns) in January 2021 will you get?
1.2.2 CAPM BETA
For each stock and month starting from January 2012, use the prior 24 month
to estimate CAPM   . You will require a ffrm-month to have at least 12 months
of prior data to estimate, otherwise the ffrm-month will be dropped from the
portfolio. From now on, your data will be ffrms with legitimate beta and other
characteristics information.
For each month starting from 2012, form 10 portfolios according to their CAPM
  , then plot the average realized monthly excess return against the average   
for the 10 portfolios. Add the CAPM line also to your graph. Please comment
on the graph you produce, what kind of the stocks are likely to be overvalued
or undervalued.
1.2.3 Size and EP Ratio
For each month starting from 2012, form 25 (5x5) portfolios by sorting stocks
according to size (proxied by market value) and EP ratio. Stock characteristics
in a month is its characteristics in the prior month. Calculate the value-weighted
returns and betas. Produce a within-size plot and a within-PE plot for the 25
portfolios by plotting mean excess return against CAPM as in the lecture notes.
Comment on your graphs.
1.2.3.1 Size and EP factors
You will divide your stocks into 6 (2X3) portfolios according to size and EP.
Returns in the portfolios are value-weighted. Then you will form your SMB
(size) factor by longing the equally-weighted portfolios of small stock portfolios
2and shorting the equally-weighted portfolios of big stock portfolios, form your
HML (EP) factor by longing the equally-weighted portfolios of high EP stock
portfolios and shorting the equally-weighted portfolios of low EP stock portfolios.
Plot the cumulative factor returns along with the cumulative market excess
return.
Run multi-factor models of market excess return, SMB and HML for each of the
25 portfolios you formed earlier, and get the factor loading. Produce within-size
and with-EP plots by plotting average portfolio excess returns against average
model predicted excess returns. You get model predicted excess returns from
factor loading and mean factor returns. Has the multi-factor loading improved
the model prediction?
1.2.4 Liquidity Premium
Is there liquidity premium and What is its dynamics? Let’s examine. In addition
 to the 2X3 sorting, we also sort independently into 5 portfolios according
to amihud. That is, we sort stockings into 2X3X5 portfolios of size, EP and
liquidity. Again, portfolio returns are value weighted. Finally, we form liquidity
 premium by longing the equally-weighted portfolios of high illiquidity
stock portfolios and shorting the equally-weighted portfolios of low illiquidity
stock portfolios. Calculate the time-series of liquidity premium, and plot the
cumulative returns of the premium. Comment on the graph you get.
1.3 Python Notes
You can use pandas to read zipped csv ffles. Notice that stkcd is a str, and
month is a date, they need to be speciffed in reading to have the correct data
type, such as the following:
monthly_returns = pd.read_csv('monthly_returns_cn.csv.gz',
parse_dates=['month'], dtype={'stkcd':'str'})
You will need statsmodels for regression. For rolling regression, you can use
a for loop as the backtesting workshop, or use RollingOLS in statsmodels.
To calculate things by group, the groupby method of pandas will be useful.
You can use apply following groupby to get results in a new data frame, or use
transform to add the results to the existing dataframe. Please see lecture notes
and pandas documentation online for details.
qcut method of pandas is handy for ffnding the cutoff and sorting dataframe
into groups. The following lambda function, when applied to x, put 10 group
labels, size0…size9 according to x.
lambda x: pd.qcut(x, 10, labels=['size'+str(x) for x in range(10)], retbins=False)
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:代寫SCIE1000、代做Python程序設計
  • 下一篇:CS439編程代寫、代做Java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美一级久久| 亚洲日本中文字幕免费在线不卡| 欧美99久久| 亚洲天堂男人| 亚洲日本精品国产第一区| 国产日韩精品视频一区| 欧美日本在线观看| 欧美aa在线视频| 久久精品盗摄| 午夜精品久久久久久久蜜桃app | 亚洲视频综合在线| 亚洲福利视频在线| 国产一区二区三区免费观看 | 欧美日韩亚洲综合| 欧美黄色免费网站| 99精品视频免费在线观看| 国产欧美日韩亚洲精品| 欧美视频中文一区二区三区在线观看 | 99精品免费网| 亚洲精品日韩一| 亚洲成人自拍视频| 一区视频在线| 亚洲成人自拍视频| 一区国产精品| 亚洲第一二三四五区| 有坂深雪在线一区| 亚洲国产精品一区二区www| 一区二区三区在线免费播放| 一区二区三区中文在线观看| 黄色成人在线网站| 亚洲二区在线| 亚洲精品欧美日韩| 中文av字幕一区| 香港久久久电影| 欧美在线一二三区| 久久久久久久久久久久久女国产乱| 性色av一区二区怡红| 久久久精品tv| 欧美波霸影院| 欧美精品一区二区三区在线播放 | 亚洲视频大全| 欧美一区二区久久久| 久久久久国产精品一区| 蜜桃久久精品乱码一区二区| 欧美精品国产精品日韩精品| 欧美极品在线视频| 国产精品另类一区| 国内不卡一区二区三区| 亚洲精品日韩久久| 亚洲欧美在线播放| 久久人体大胆视频| 欧美日本不卡| 国产日本欧洲亚洲| 亚洲国产成人精品久久久国产成人一区| 91久久久久久久久| 亚洲一区影音先锋| 免费观看成人网| 国产精品女同互慰在线看| 好吊一区二区三区| 日韩网站在线| 久久三级福利| 国产精品欧美在线| 亚洲激情女人| 久久精品国产久精国产爱| 欧美日本高清视频| 国内成人精品2018免费看 | 欧美午夜三级| 有码中文亚洲精品| 亚洲欧美一级二级三级| 欧美人与性动交cc0o| 国产一区二区三区免费观看| 亚洲美女黄色片| 久久久久久久一区二区三区| 欧美婷婷久久| 亚洲精品1区2区| 久久久在线视频| 国产免费亚洲高清| 一区二区三区日韩| 欧美精品一区二区三区蜜桃 | 欧美成人一区二区三区在线观看 | 欧美视频精品在线| 亚洲福利视频网站| 老牛国产精品一区的观看方式| 欧美午夜在线视频| 一区二区三区高清不卡| 欧美激情综合五月色丁香| 亚洲国产成人精品久久久国产成人一区| 校园春色综合网| 国产精品一区在线播放| 亚洲一区二区日本| 欧美性事在线| 亚洲一区尤物| 国产精品午夜春色av| 亚洲在线日韩| 国产精品久久久久久久久久免费| 夜夜夜久久久| 国产精品二区在线| 亚洲深夜福利网站| 国产精品家庭影院| 亚洲欧美日韩在线综合| 国产伦理精品不卡| 欧美亚洲一区二区三区| 国产三级欧美三级| 久久视频这里只有精品| 一区二区亚洲欧洲国产日韩| 免费在线观看一区二区| 亚洲日韩欧美视频一区| 欧美午夜视频一区二区| 亚洲无吗在线| 国产亚洲永久域名| 乱人伦精品视频在线观看| 亚洲精品国产欧美| 国产精品久久久久久亚洲调教| 香蕉乱码成人久久天堂爱免费 | 久久影视三级福利片| 最新亚洲电影| 国产女精品视频网站免费| 久久久亚洲精品一区二区三区 | 亚洲欧美另类综合偷拍| 国产精品美女久久久久aⅴ国产馆| 亚洲欧美中文日韩在线| 狠狠干综合网| 欧美日韩在线一区| 久久久精品免费视频| 亚洲人成在线播放网站岛国| 国产精品美女在线观看| 久久午夜羞羞影院免费观看| 日韩午夜在线观看视频| 国产一区二区三区av电影| 欧美大片在线看| 午夜视频在线观看一区二区| 亚洲高清网站| 国产精品专区一| 欧美精品久久久久a| 欧美在线观看一区二区三区| 亚洲精品视频免费| 一区二区三区在线观看欧美| 欧美日韩综合在线免费观看| 久久久蜜桃精品| 亚洲综合精品| 9l国产精品久久久久麻豆| 韩国自拍一区| 国产伦一区二区三区色一情| 欧美久久在线| 噜噜噜躁狠狠躁狠狠精品视频| 午夜亚洲精品| 在线一区欧美| 日韩视频一区二区| 亚洲缚视频在线观看| 国产伦精品一区二区三区免费迷| 欧美福利视频网站| 久久综合久色欧美综合狠狠 | 国产主播一区| 国产精品日韩欧美一区二区| 欧美激情bt| 免费欧美高清视频| 久久久精品tv| 欧美在线啊v| 欧美亚洲一区二区三区| 亚洲欧美伊人| 亚洲欧美日韩一区| 亚洲欧美国产精品专区久久| 亚洲一区二区三区视频播放| 99国产精品久久久久老师 | 日韩一级大片| 日韩一区二区高清| 一区二区日本视频| 亚洲午夜久久久| 亚洲一区二区伦理| 午夜精品视频在线观看一区二区| 亚洲一级特黄| 亚洲欧美日韩另类| 欧美一区精品| 久久人人爽人人爽| 蜜臀久久99精品久久久久久9| 麻豆成人综合网| 欧美成人69| 欧美日韩精品一区二区| 欧美日韩免费一区二区三区视频| 欧美系列精品| 国产欧美日韩一区| 永久免费精品影视网站| 亚洲经典一区| 亚洲欧美资源在线| 久久av老司机精品网站导航| 久久久久在线观看| 欧美人与禽猛交乱配视频| 国产精品久久久久一区| 国产一区二区福利| 最新精品在线| 亚洲一区影音先锋| 久久久成人网| 欧美理论电影在线播放| 国产精品久久久久91| 激情亚洲网站| 国产精品99久久久久久久女警| 欧美一区亚洲二区| 欧美精品久久一区| 国产精品视频久久| 亚洲人成在线观看一区二区|