合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做CMPT 477、代寫Java/python語言編程
        代做CMPT 477、代寫Java/python語言編程

        時間:2024-10-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        CMPT **7 / 777 Formal Verification
        Programming Assignment 1
        This assignment is due by 11:59pm PT on Wednesday Oct 2, 2024. Please submit it to Canvas. Late policy:
        Suppose you can get n (out of 100) points based on your code and report
        • If you submit before the deadline, you can get all n points.
        • If you submit between 11:59pm PT Oct 2 and 11:59pm PT Oct 3, you get n − 10 points. • If you submit between 11:59pm PT Oct 3 and 11:59pm PT Oct 4, you get n − 20 points. • If you submit after 11:59pm PT Oct 4, you get 0 points.
        Problem Description
        (100 points) A solution to a graph coloring problem is an assignment of colors to vertices such that no two adjacent vertices have the same color. Formally, a finite graph G = (V,E) consists of vertices V = {v1,...,vn} and edges E = {(vi1,wi1),...,(vik,wik)}. The finite set of colors is given by C = {c1,...,cm}. A problem instance is given by a graph and a set of colors: the problem is to assign each vertex v ∈ V a color(v) ∈ C such that for every edge (v,w) ∈ E, color(v) ̸= color(w). Clearly, not all instances have solutions.
        Please write a Java program with Z3 APIs to solve the graph coloring problem. The input is a file in the following format
        NM
        vi1 wi1
        vi2 wi2
        ...
        vik wik
        where the first line contains two positive integers: N is the number of vertices, and M is the number of colors (separated by a space). Without loss of generality, we can assume V = {1,...,N} and C = {1,...,M}. Each of the rest line contains two positive integers vij and wij that are no more than N, which corresponds to an edge (vij , wij ).
        The output is also a file. If an instance does not have a solution, write “No Solution” in the output file. Otherwise, write an assignment of colors to vertices in the following format.
        v1 c1
        v2 c2
        ...
        vm ck
        where vi denotes the vertex and ci denotes its color, i.e., color(vi) = ci, separated by a space.
        You might want to use the following hints for encoding: • Introduce a boolean variable pv,c for color(v) = c.
        • Describe the formula asserting every vertex is colored.
        1

        • Describe the formula asserting every vertex has at most one color.
        • Describe the formula asserting that no two connected vertices have the same color.
        2 Sample Input and Output
        Suppose we have an input file input.txt that contains the following six lines
        which represents the following graph
        43 12 13 14 24 34
        12
        34
           After running the program, we can get a file with the following lines (not unique)
        11 22 ** 43
        It means the colors of vertices v1, v2, v3, v4 are c1, c2, c2, c3, respectively. 3 Compilation and Execution
        Compilation. The provided codebase uses the Maven build system. After you enter the verif-sat direc- tory, the project can be easily compiled with one command
        $ mvn package
        Then you should be able to see the message “BUILD SUCCESS”. A directory called target will be created
        and a jar file called verif-sat-1.0.jar will be generated inside the target.
        Execution. In the verif-sat directory, you can execute the program using the following command (use ;
        instead of : on Windows)
        $ java -cp lib/com.microsoft.z3.jar:target/verif-sat-1.0.jar sat.GraphColoring <in-path> <out-path>
        where <in-path> is the path to the input file and <out-path> is the path to the output file. For example, you can run
        $ java -cp lib/com.microsoft.z3.jar:target/verif-sat-1.0.jar sat.GraphColoring input.txt output.txt
        You will see a runtime exception with message “To be implemented”, because the program is not imple- mented yet. After you finish the implementation, you should see a file named output.txt with the content as shown in Section 2.
        2

        4 Deliverable
        A zip file called P1 SFUID.zip (SFUID is replaced with your 9-digit student ID number) that contains the followings:
        • The verif-sat directory that contains your Java program. You can have multiple source files if you want, but you need to make sure the project can be built and executed in the way described in Section 3.
        • A short report called P1 SFUID.pdf that describes your encoding and explains the design choices, features, issues (if any), and anything else that you want to explain about your program.
        3

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機打開當前頁
      1. 上一篇:CVEN9612代寫、代做Java/Python程序設計
      2. 下一篇:代做COMP3230、代寫c/c++編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 久久久精品日本一区二区三区| 国产日产久久高清欧美一区| 无码人妻久久久一区二区三区| 日韩视频一区二区| 国产福利视频一区二区| 性盈盈影院免费视频观看在线一区| 国产一区二区三区在线免费观看| 日本一区二区三区在线观看视频| 日本精品夜色视频一区二区| 三级韩国一区久久二区综合| 99精品国产高清一区二区三区 | 激情爆乳一区二区三区| 国产成人精品无人区一区| 亚洲福利视频一区| 国产精品99精品一区二区三区| 天码av无码一区二区三区四区| 国产丝袜美女一区二区三区| 国产日韩精品视频一区二区三区| 日韩精品午夜视频一区二区三区| 国产福利电影一区二区三区| 亚洲一区二区电影| 无码国产精品一区二区高潮| 亚洲爆乳精品无码一区二区三区 | 成人无号精品一区二区三区| 日本美女一区二区三区| 无码精品人妻一区二区三区漫画| 国产一区二区草草影院| 亚洲日韩激情无码一区| 成人精品一区二区不卡视频| 久久精品国产免费一区| 国产成人一区二区精品非洲| 久久福利一区二区| 一区二区三区杨幂在线观看 | 国产一区二区视频在线播放 | 国产福利视频一区二区| 一区高清大胆人体| 国产一区二区三区播放| 亚洲国产精品一区二区久久hs | 3d动漫精品一区视频在线观看| 文中字幕一区二区三区视频播放 | 久久精品动漫一区二区三区|