99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲最大成人综合| 亚洲黄色尤物视频| 日本一区免费视频| 麻豆一区二区99久久久久| 成人黄色777网| 国产精品美女视频| 99视频国产精品| 一区二区三区毛片| 欧美另类变人与禽xxxxx| 亚洲欧美电影院| 欧美日韩精品一区视频| 一区二区三区日韩在线观看| 欧美午夜不卡在线观看免费| 亚洲国产精品久久人人爱蜜臀| 99久久国产免费看| 亚洲国产精品久久不卡毛片| 日韩一区二区免费电影| 久久国产夜色精品鲁鲁99| 精品国产sm最大网站免费看| 国产一区二区精品久久91| 国产精品久久久久久久久图文区 | 国产一区二区主播在线| 国产精品一区二区久激情瑜伽| 国产精品自拍毛片| 色婷婷久久久久swag精品| 精品国产一区二区三区久久影院| 久久精品二区亚洲w码| 欧美国产97人人爽人人喊| 日本精品裸体写真集在线观看| 日本伊人精品一区二区三区观看方式| 91精品综合久久久久久| 欧美日韩精品一区二区| 精品国内片67194| 色婷婷av一区| 夫妻av一区二区| 久草这里只有精品视频| 日韩专区在线视频| 亚洲乱码国产乱码精品精98午夜| 久久亚洲综合色一区二区三区| 中文字幕一区在线| 久久精品水蜜桃av综合天堂| 国产精品影视在线| 久久国产乱子精品免费女| 日本女人一区二区三区| 热久久国产精品| 国产99久久久久| 色婷婷av一区二区三区大白胸 | 欧美在线免费视屏| 欧洲另类一二三四区| 欧美在线综合视频| 精品日韩一区二区三区| 欧美韩国日本综合| 亚洲精品日日夜夜| 久久精品二区亚洲w码| bt7086福利一区国产| 色先锋aa成人| 成人在线视频首页| 日日摸夜夜添夜夜添亚洲女人| 久久久亚洲精品一区二区三区| 91久久精品一区二区| 国产又粗又猛又爽又黄91精品| 樱花草国产18久久久久| 精品剧情在线观看| 欧美人xxxx| 欧美丰满高潮xxxx喷水动漫 | 欧美视频一区二区三区在线观看 | 久久国产剧场电影| 亚洲精品v日韩精品| 亚洲精品你懂的| 亚洲欧洲国产专区| 最新日韩在线视频| 亚洲免费视频中文字幕| 中文字幕亚洲精品在线观看| 日韩精品一区二区三区老鸭窝| 欧美性猛片aaaaaaa做受| 成人国产精品免费观看动漫| 国产999精品久久久久久| 大美女一区二区三区| 成人av综合一区| 在线观看成人免费视频| 欧美一区二视频| 久久影音资源网| 亚洲欧洲日产国产综合网| 亚洲激情网站免费观看| 天天爽夜夜爽夜夜爽精品视频 | 久久精品国产免费看久久精品| 麻豆一区二区99久久久久| 久热成人在线视频| 丁香六月综合激情| 91国偷自产一区二区开放时间| 欧美日韩国产一区| 国产欧美一区二区精品忘忧草| 亚洲女与黑人做爰| 九色porny丨国产精品| 一本色道**综合亚洲精品蜜桃冫| 欧美天堂亚洲电影院在线播放| 日韩一区二区中文字幕| 中文字幕欧美三区| 亚洲二区在线视频| 韩国v欧美v亚洲v日本v| 欧洲色大大久久| 国产欧美久久久精品影院| 亚洲国产日韩a在线播放| 成人免费三级在线| 日本一区二区免费在线| 免费观看在线综合| 欧美三级电影网| 亚洲综合在线观看视频| 97精品久久久午夜一区二区三区| 色综合久久九月婷婷色综合| 久久久精品天堂| 国产+成+人+亚洲欧洲自线| 4438成人网| 美女网站色91| 欧美经典三级视频一区二区三区| 精品综合久久久久久8888| 精品对白一区国产伦| 国产一区欧美二区| 久久久久久99精品| 成人看片黄a免费看在线| 亚洲成年人网站在线观看| 欧美日产在线观看| 日本aⅴ精品一区二区三区 | 欧美欧美午夜aⅴ在线观看| 日韩成人午夜电影| 欧美主播一区二区三区美女| 一区二区视频在线看| 在线观看91精品国产入口| 亚洲成人中文在线| 日韩一区二区三区精品视频| 青娱乐精品视频在线| 国产区在线观看成人精品| www.色精品| 麻豆91精品91久久久的内涵| 中文字幕精品一区 | 国产精品三级视频| 欧美日韩亚洲另类| 国产成人精品免费看| 一本色道久久综合精品竹菊| 人人爽香蕉精品| 亚洲一二三四区| 国产日韩欧美在线一区| 欧美日韩久久久一区| 亚洲电影激情视频网站| 国产精品欧美久久久久无广告| proumb性欧美在线观看| 国产色综合久久| 91精品国产综合久久久蜜臀图片| 国产不卡高清在线观看视频| 亚洲一区二区精品3399| 国产成人精品免费| 日韩 欧美一区二区三区| 亚洲一区在线观看视频| 亚洲欧美日韩国产综合在线| 日韩欧美视频在线| 精品日韩一区二区三区免费视频| 在线观看亚洲a| 91蜜桃视频在线| 99精品视频一区| 日本道免费精品一区二区三区| 国产成人免费在线观看不卡| 国产在线看一区| 国产女人18毛片水真多成人如厕| 久久精品人人做人人综合| 8v天堂国产在线一区二区| 69堂精品视频| 欧美精品一区二区久久婷婷| 久久久午夜电影| 亚洲精品国产成人久久av盗摄 | 国产高清不卡一区二区| 国产高清在线精品| 色综合中文字幕国产| 91久久一区二区| 精品久久久久香蕉网| 国产精品久久国产精麻豆99网站| 亚洲欧洲精品一区二区三区 | 日韩欧美精品在线| 亚洲成av人片观看| 欧美人伦禁忌dvd放荡欲情| 午夜a成v人精品| 日韩欧美中文字幕公布| 国产综合色精品一区二区三区| 国产女同互慰高潮91漫画| 91小视频在线免费看| 午夜一区二区三区视频| 欧美一区二区三区在线观看| 国产风韵犹存在线视精品| 亚洲综合丁香婷婷六月香| 欧美大尺度电影在线| 91免费在线看| 国产精品伊人色| 亚洲一区中文日韩| 欧美国产97人人爽人人喊| 欧美日韩在线一区二区| 国产精品123| 日韩成人免费看| 一区二区三区在线不卡| 久久蜜桃一区二区| 91精品久久久久久久99蜜桃| 国产成人精品一区二|