99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          午夜欧美大尺度福利影院在线看 | 国产精品久久激情| 欧美视频三区在线播放| 欧美日韩人人澡狠狠躁视频| 国产精品久久久久影院色老大| 国产片一区二区| 亚洲高清色综合| 亚洲无毛电影| 久久男人资源视频| 欧美日韩视频免费播放| 国产精品亚洲综合天堂夜夜 | 狠狠久久亚洲欧美专区| 国产日韩欧美a| 亚洲国产精品一区二区www在线| 99在线精品视频| 欧美一区二区三区成人| 欧美搞黄网站| 国产午夜亚洲精品理论片色戒| 亚洲高清视频一区| 亚洲香蕉伊综合在人在线视看| 久久九九国产精品怡红院| 欧美精品一区二区久久婷婷| 国产精品综合视频| 亚洲激情综合| 久久久99久久精品女同性| 欧美日韩精选| 亚洲国产欧美一区二区三区同亚洲 | 国产日产高清欧美一区二区三区| 亚洲国产aⅴ天堂久久| 亚洲欧美另类久久久精品2019| 久久亚洲春色中文字幕| 欧美日韩亚洲三区| 亚洲激情网址| 久久久精品网| 国产精品日韩在线播放| 一本色道久久综合狠狠躁的推荐| 久久精品一区二区三区四区| 国产精品chinese| 亚洲人成毛片在线播放女女| 久久精品夜色噜噜亚洲aⅴ| 国产精品美女久久久久久久| 99综合电影在线视频| 美国成人直播| 亚洲国产成人精品视频| 久久久人成影片一区二区三区观看| 国产精品日日做人人爱| 亚洲图色在线| 国产精品激情av在线播放| 99视频精品在线| 欧美剧在线观看| 亚洲精品一区二区在线观看| 欧美激情亚洲| 99精品免费视频| 欧美日韩另类字幕中文| 99re成人精品视频| 欧美久久九九| av成人免费在线| 欧美日韩在线一区| 亚洲图片欧美一区| 国产精品萝li| 欧美自拍偷拍午夜视频| 国产午夜精品在线| 久久亚洲春色中文字幕| 亚洲国产中文字幕在线观看| 欧美va天堂| 夜夜嗨av色一区二区不卡| 欧美视频在线播放| 羞羞漫画18久久大片| 国内精品久久久久久影视8| 久久国产88| 亚洲国产精选| 欧美吻胸吃奶大尺度电影| 午夜国产精品影院在线观看| 国产亚洲成人一区| 免费亚洲电影| 在线中文字幕一区| 国产偷自视频区视频一区二区| 久久精品中文字幕免费mv| 亚洲国产精品一区二区第一页| 欧美日韩网址| 欧美一区三区二区在线观看| 尹人成人综合网| 欧美日韩国产专区| 性欧美xxxx大乳国产app| 影音先锋另类| 欧美视频精品在线观看| 久久精品三级| 亚洲视频一二| 尤妮丝一区二区裸体视频| 欧美私人网站| 狼人天天伊人久久| 亚洲伊人网站| 91久久夜色精品国产网站| 国产麻豆视频精品| 欧美国产1区2区| 亚洲欧美日韩天堂| 亚洲日本中文字幕免费在线不卡| 国产精自产拍久久久久久| 欧美国产在线视频| 久久激情网站| 亚洲免费小视频| 亚洲精品一区二区三区四区高清| 国产一区美女| 国产精品免费观看在线| 欧美激情视频给我| 久久久久一区二区三区| 亚洲永久在线观看| 日韩视频中午一区| 136国产福利精品导航网址| 国产欧美日韩高清| 欧美日韩一区二区在线| 欧美1区2区3区| 久久久久一区二区三区四区| 午夜欧美精品| 宅男噜噜噜66一区二区 | 国产三级欧美三级日产三级99| 欧美大胆人体视频| 久久琪琪电影院| 先锋影音网一区二区| 亚洲丝袜av一区| 一区二区三区四区在线| 亚洲精选国产| 日韩午夜剧场| 亚洲精品在线二区| 亚洲欧洲在线播放| 亚洲国产成人在线视频| 伊人久久久大香线蕉综合直播| 国产日韩欧美在线播放不卡| 国产精品第一区| 国产精品第一页第二页第三页| 欧美三级日本三级少妇99| 欧美日韩理论| 国产精品国产精品国产专区不蜜| 欧美午夜电影网| 欧美体内谢she精2性欧美| 欧美日韩一卡二卡| 欧美体内谢she精2性欧美| 国产精品久久激情| 国产精品青草久久| 国产一区二区久久精品| 伊人久久久大香线蕉综合直播| 一色屋精品亚洲香蕉网站| 亚洲国产精品va在线看黑人动漫| 亚洲大片av| 亚洲毛片av在线| 亚洲视频免费观看| 欧美一区不卡| 老司机午夜免费精品视频| 欧美精品成人| 国产精品扒开腿做爽爽爽软件| 国产精品女主播在线观看| 国产亚洲福利社区一区| 在线观看的日韩av| 亚洲精品久久嫩草网站秘色| 99ri日韩精品视频| 性欧美精品高清| 久久亚洲视频| 欧美日韩在线另类| 国产一区二区三区四区在线观看 | 亚洲私人黄色宅男| 亚洲综合欧美日韩| 久久久久在线| 欧美天天视频| 永久免费视频成人| 一区二区三区成人精品| 久久精品免费播放| 欧美日韩天天操| 国产在线高清精品| 日韩视频在线播放| 欧美在线播放一区| 欧美日韩免费高清一区色橹橹| 国产欧美午夜| 一区二区日本视频| 久久夜色精品| 国产精品久久久久9999| 一区二区视频免费在线观看| 亚洲视频精品| 欧美国产视频在线观看| 国产日韩欧美日韩| 亚洲一区二区黄| 欧美成人四级电影| 国产丝袜一区二区| 亚洲视频综合| 欧美日韩国产精品一区| 黄色综合网站| 久久狠狠久久综合桃花| 国产精品国产自产拍高清av王其| 樱桃成人精品视频在线播放| 亚洲图片你懂的| 欧美精品在线观看一区二区| 黄色欧美成人| 久久精品国产99国产精品澳门| 欧美图区在线视频| 亚洲每日更新| 欧美成人免费视频| 在线观看视频免费一区二区三区| 西西人体一区二区| 国产精品免费视频xxxx| 亚洲午夜精品一区二区三区他趣| 欧美黄色大片网站|