合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        代寫CS 417編程、代做Python程序語言
        代寫CS 417編程、代做Python程序語言

        時間:2024-10-01  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        CS 417/517: Introduction to Human Computer Interaction -
        Project 1 ( Fall 2024 )
        1 Introduction
        In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
        its performance in classifying handwritten digits. After completing this assignment, you are able to
        understand:
        • How Neural Network works? How to implement Neural Network?
        • How to setup a Machine Learning experiment on public data?
        • How regularization, dropout plays a role in machine learning implementation?
        • How to ffne-tune a well-train model?
        To get started with the exercise, you will need to download the supporting ffles and unzip its
        contents to the directory you want to complete this assignment.
        2 Dataset
        The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
        All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
        dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
        255 is white and anything between represents a different shade of gray. In many research papers, the
        offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
        validation set of 10000 examples.
        3 Implementation
        ( Notice : You can use any library to ffnish this project. We recommend students to use Google
        Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
        1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
        colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
        by clicking on File - New notebook. )
        3.1 Tasks
        Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
        MNIST or FER-2013 dataset, and save the well-train model.
        Code Task (1) Build your customized Convolution Neural Network (CNN)
        • Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
        takes these images as input and gives as output what the handwritten digits represent for this
        image.
        • Test your machine learning model on the testing set: After ffnishing the architecture of CNN
        models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
        number of neurons per layer), and test your model’s performance on the testing set.
        • Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
        potential reasons.
        • Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
        Compare the results in report and analyze the potential reasons.
        Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
        Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
        it in the report.
        Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
        recorded video using the pre-trained model and OpenCV libraries.
        Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
        Load the video and read frames.
        Load the pre-trained model.
        While the input is available, read the next frame.
        Process the frame. (options: resizing, cropping, blurring, converting to
        grayscale, binarizing, normalizing and etc.)
        Input the processed frame into the model.
        Use a threshold to detect digits.
        Put a contour around the digit and label the predicted value and probability.
        Display the frame.
        Release resources.
        Hint: Here lists some of the functions you might use.
        cv2.VideoCapture
        cv2.resize
        cv2.cvtColor
        2cv2.threshold
        cv2.putText
        cv2.rectangle
        cv2.imshow
        cv2.waitKey
        cv2.destroyAllWindows
        Writing Report Task [30 Points]: Write a report to describe above implementation details and
        corresponding results.
        4 Deliverables
        There are two deliverables: report and code.
        1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
        for you to use the NIPS template to structure your report. You may include comments in the
        Jupyter Notebook, however you will need to duplicate the results in the report. The report
        should describe your results, experimental setup, details and comparison between the results
        obtained from different setting of the algorithm and dataset.
        2. Code (70 points)
        The code for your implementation should be in Python only. The name of the Main ffle should
        be main.ipynb. Please provide necessary comments in the code and show some essential steps
        for your group work.
        3

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







         

        掃一掃在手機打開當前頁
      1. 上一篇:代做COMP 412、代寫python設(shè)計編程
      2. 下一篇:CVEN9612代寫、代做Java/Python程序設(shè)計
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設(shè)計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 中文字幕av一区| 无码av免费一区二区三区试看| 国产精品免费综合一区视频| 精品无码一区二区三区亚洲桃色| 精品无码人妻一区二区三区18| 日韩精品无码视频一区二区蜜桃| 亚洲欧洲无码一区二区三区| 日韩在线一区高清在线| 人体内射精一区二区三区| 蜜臀Av午夜一区二区三区| 国产AV国片精品一区二区| 日本韩国一区二区三区| 精品国产日韩亚洲一区| 久久久久人妻精品一区| 亚洲熟妇无码一区二区三区导航| 免费无码毛片一区二区APP| 精品人妻无码一区二区三区蜜桃一| 国产乱码一区二区三区四| 国产乱码精品一区二区三区| 无码国产精品一区二区免费式影视 | 日韩精品一区二区亚洲AV观看| 好吊妞视频一区二区| 久久久久无码国产精品一区 | 日韩一区精品视频一区二区| 国产高清一区二区三区视频| 精品无码人妻一区二区三区品 | 亚洲av午夜福利精品一区| 成人国产精品一区二区网站| 男人的天堂亚洲一区二区三区| 久久久无码精品人妻一区| 日韩精品中文字幕视频一区| 亚洲国产AV一区二区三区四区| 亚洲一区精品视频在线| 麻豆亚洲av熟女国产一区二| 亚洲av无码片vr一区二区三区 | 久久精品国产一区二区三| 日本免费电影一区二区| 亚洲国产成人久久综合一区 | 国产精品区一区二区三在线播放| 亚洲av午夜福利精品一区人妖| 日本高清一区二区三区|