99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫AI6012程序、代做Java/c++編程
代寫AI6012程序、代做Java/c++編程

時間:2024-09-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



AI6012: Machine Learning Methodologies &
Applications Assignment (25 points)
Important notes: to ffnish this assignment, you are allowed to look up textbooks or
search materials via Google for reference. NO plagiarism from classmates is allowed.
The submission deadline is by 11:59 pm, Sept. 30, 2022. The ffle to be submitted
is a single PDF (no source codes are required to be submitted). Multiple submission
attempts are allowed, and the last one will be graded. A submission link is available
under “Assignments” of the course website in NTULearn.
Question 1 (10 marks): Consider a multi-class classiffcation problem of C classes.
Based on the parametric forms of the conditional probabilities of each class introduced
on the 39th Page (“Extension to Multiple Classes”) of the lecture notes of L4, derive
the learning procedure of regularized logistic regression for multi-class classiffcation
problems.
Hint: deffne a loss function by borrowing an idea from binary classiffcation, and
derive the gradient descent rules to update {w(c)}’s.
Question 2 (5 marks): This is a hands-on exercise to use the SVC API of scikitlearn
1
to
 train a SVM with the linear kernel and the rbf kernel, respectively, on a binary
classiffcation dataset. The details of instructions are described as follows.
1. Download the a9a dataset from the LIBSVM Dataset page.
This is a preprocessed dataset of the Adult dataset in the UCI Irvine Machine
Learning Repository
2
, which consists of a training set (available here) and a test
set (available here).
Each ffle (the train set or the test set) is a text format in which each line represents
a labeled data instance as follows:
label index1:value1 index2:value2 ...
where “label” denotes the class label of each instance, “indexT” denotes the
T-th feature, and valueT denotes the value of the T-th feature of the instance.
1Read Pages 63-64 of the lecture notes of L5 for reference
2The details of the original Adult dataset can be found here.
1This is a sparse format, where only non-zero feature values are stored for each
instance. For example, suppose given a data set, where each data instance has 5
dimensions (features). If a data instance whose label is “+1” and the input data
instance vector is [2 0 2.5 4.3 0], then it is presented in a line as
+1 1:2 3:2.5 4:4.3
Hint: sciki-learn provides an API (“sklearn.datasets.load svmlight ffle”) to load
such a sparse data format. Detailed information is available here.
2. Regarding the linear kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter C in
{0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table. Note that for all the
other parameters, you can simply use the default values or specify the speciffc
values you used in your submitted PDF ffle.
Table 1: The 3-fold cross-validation results of varying values of C in SVC with linear
kernel on the a9a training set (in accuracy).
C = 0.01 C = 0.05 C = 0.1 C = 0.5 C = 1
? ? ? ? ?
3. Regarding the rbf kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter gamma
(i.e., σ
2 on the lecture notes) in {0.01, 0.05, 0.1, 0.5, 1} and different values of
the parameter C in {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table.
Note that for all the other parameters, you can simply use the default values or
specify the speciffc values you used in your submitted PDF ffle.
Table 2: The 3-fold cross-validation results of varying values of gamma and C in SVC
with rbf kernel on the a9a training set (in accuracy).
Hint: there are no speciffc APIs that integrates cross-validation into SVMs in
sciki-learn. However, you can use some APIs under the category “Model Selection
→ Model validation” to implement it. Some examples can be found here.
4. Based on the results shown in Tables **2, determine the best kernel and the best
parameter setting. Use the best kernel with the best parameter setting to train a
SVM using the whole training set and make predictions on test set to generate
the following table:
2Table 3: Test results of SVC on the a9a test set (in accuracy).
Specify which kernel with what parameter setting
Accuracy of SVMs ?
Question 3 (5 marks): The optimization problem of linear soft-margin SVMs can
be re-formulated as an instance of empirical structural risk minimization (refer to Page
37 on L5 notes). Show how to reformulate it. Hint: search reference about the hinge
loss.
Question 4 (5 marks): Using the kernel trick introduced in L5 to extend the regularized
linear regression model (L3) to solve nonlinear regression problems. Derive a
closed-form solution (i.e., to derive a kernelized version of the closed-form solution on
Page 50 of L3).


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:公認口碑最好的十個莆田微商,選擇這10個微商沒錯的
  • 下一篇:COMPSCI 315代做、代寫Python/Java語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩午夜影院| 美女一区二区三区| 欧美在线观看视频一区二区三区| 丝袜美腿一区二区三区| 久久婷婷国产综合精品青草 | 国产成人av自拍| 青青草97国产精品免费观看| 亚洲国产一区二区视频| 一区二区三区在线视频免费| 亚洲精品成a人| 亚洲自拍偷拍网站| 亚洲成a人v欧美综合天堂下载 | 91影院在线免费观看| 99re热这里只有精品视频| 成人网页在线观看| 91亚洲精品久久久蜜桃| 色成人在线视频| 欧美色偷偷大香| 制服丝袜激情欧洲亚洲| 欧美va天堂va视频va在线| 精品国产人成亚洲区| 欧美国产禁国产网站cc| 亚洲情趣在线观看| 五月激情六月综合| 蜜桃av一区二区| 国产一区在线观看视频| gogo大胆日本视频一区| 99在线精品一区二区三区| 欧美日韩一区二区在线视频| 91精品啪在线观看国产60岁| 久久婷婷一区二区三区| 一区二区三区国产豹纹内裤在线| 日韩精品电影在线| 国产69精品久久99不卡| 91免费观看视频在线| 欧美久久一二三四区| 精品av久久707| 一区二区三区蜜桃| 日产国产高清一区二区三区| 国产一区二区三区蝌蚪| 91免费精品国自产拍在线不卡| 欧美又粗又大又爽| 日韩欧美国产综合一区| 中文字幕一区av| 五月综合激情婷婷六月色窝| 精品一区二区三区av| 91麻豆精东视频| 久久午夜免费电影| 亚洲香蕉伊在人在线观| 国产丶欧美丶日本不卡视频| 欧美日韩三级一区二区| 国产精品不卡在线| 轻轻草成人在线| 国产精品亚洲视频| 91麻豆高清视频| 日韩欧美国产wwwww| 亚洲女人小视频在线观看| 久久97超碰国产精品超碰| 91精品1区2区| 国产精品欧美一级免费| 麻豆精品久久精品色综合| 91日韩在线专区| 国产精品美女久久久久久久久久久 | 麻豆91在线观看| 日本韩国欧美一区| 国产精品免费aⅴ片在线观看| 麻豆精品蜜桃视频网站| 91麻豆精品国产| 亚洲观看高清完整版在线观看| 不卡的电影网站| 亚洲国产精品成人综合色在线婷婷 | 久久久久久久久久久久久久久99 | 亚洲综合精品久久| 成人黄色在线看| 中文字幕欧美激情一区| 风流少妇一区二区| 中文字幕欧美激情| 国产精品一区免费在线观看| 欧美成人免费网站| 免费在线看成人av| 欧美xxxx老人做受| 激情久久久久久久久久久久久久久久| 欧美一区二区三区视频免费播放| 亚洲国产毛片aaaaa无费看 | 精品国产精品一区二区夜夜嗨| 蜜桃久久精品一区二区| 91精品欧美一区二区三区综合在| 首页国产丝袜综合| 欧美成人性福生活免费看| 久久精品久久精品| 日韩美一区二区三区| 亚洲成a人在线观看| 欧美日韩国产片| 日韩中文欧美在线| 日韩欧美一级特黄在线播放| 久久精品国产亚洲a| 久久一区二区三区四区| 国产精品18久久久久久久网站| 国产精品亲子伦对白| 成人久久久精品乱码一区二区三区| 国产无一区二区| 99re免费视频精品全部| 亚洲在线免费播放| 777xxx欧美| 国产精品99久久久久久有的能看| 国产日韩欧美麻豆| 欧美日韩一区二区在线观看 | 精品免费国产一区二区三区四区| 国产精品综合视频| 亚洲乱码国产乱码精品精可以看| 欧美男人的天堂一二区| 国产精品一区二区果冻传媒| 亚洲欧洲三级电影| 欧美日本一区二区三区| 国产麻豆精品视频| 亚洲黄色av一区| 精品国产免费人成电影在线观看四季 | 日韩三级视频中文字幕| 国产一区二区三区精品视频| 亚洲女同一区二区| 欧美成人精品二区三区99精品| 成人av网站在线观看| 视频在线观看国产精品| 亚洲国产精品v| 91精品国产综合久久久久久漫画 | 亚洲天堂2016| 精品人在线二区三区| proumb性欧美在线观看| 蜜臀99久久精品久久久久久软件| 国产精品国产三级国产| 91精品国产91综合久久蜜臀| 国产**成人网毛片九色 | 国产91综合一区在线观看| 亚洲在线免费播放| 久久久精品日韩欧美| 欧美日本国产视频| 色成人在线视频| 国产成人免费高清| 久久精品国产久精国产爱| 亚洲精品免费电影| 国产亚洲婷婷免费| 日韩欧美电影在线| 91九色最新地址| 99久久婷婷国产| 国产黄色精品视频| 久久不见久久见免费视频1| 亚洲成av人影院在线观看网| 国产精品欧美经典| 久久夜色精品国产噜噜av| 欧美一区二区不卡视频| 欧美亚洲图片小说| 色94色欧美sute亚洲线路一久| 成人黄色网址在线观看| 黄色成人免费在线| 精品综合免费视频观看| 男男成人高潮片免费网站| 日韩高清一区二区| 亚洲电影中文字幕在线观看| 一区二区三区日韩精品| 亚洲男人的天堂一区二区 | 麻豆91在线播放| 九一九一国产精品| 毛片av一区二区| 久久 天天综合| 精品一区二区三区久久久| 久久精品二区亚洲w码| 日韩av网站免费在线| 日韩激情一二三区| 亚洲成人一区在线| 香蕉乱码成人久久天堂爱免费| 亚洲午夜电影在线观看| 亚洲一区在线看| 肉丝袜脚交视频一区二区| 日本不卡中文字幕| 捆绑调教美女网站视频一区| 另类调教123区| 国产精品18久久久久久vr| 国产成人精品亚洲日本在线桃色| 韩国av一区二区三区四区| 国产成人精品一区二| 99久久婷婷国产综合精品电影| 日本精品一区二区三区高清| 欧美日韩国产影片| 日韩三级免费观看| 国产精品久久久久影视| 亚洲精品水蜜桃| 免费精品视频在线| 99riav一区二区三区| 欧美日韩不卡在线| 欧美激情在线一区二区三区| 亚洲一区二区三区在线| 日韩电影在线免费看| 国产v日产∨综合v精品视频| 色爱区综合激月婷婷| 欧美电影免费观看高清完整版| 久久久亚洲国产美女国产盗摄| 一区二区三区在线视频免费观看| 久88久久88久久久| 色欧美片视频在线观看在线视频| 欧美日韩在线免费视频|