99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫AI6012程序、代做Java/c++編程
代寫AI6012程序、代做Java/c++編程

時間:2024-09-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



AI6012: Machine Learning Methodologies &
Applications Assignment (25 points)
Important notes: to ffnish this assignment, you are allowed to look up textbooks or
search materials via Google for reference. NO plagiarism from classmates is allowed.
The submission deadline is by 11:59 pm, Sept. 30, 2022. The ffle to be submitted
is a single PDF (no source codes are required to be submitted). Multiple submission
attempts are allowed, and the last one will be graded. A submission link is available
under “Assignments” of the course website in NTULearn.
Question 1 (10 marks): Consider a multi-class classiffcation problem of C classes.
Based on the parametric forms of the conditional probabilities of each class introduced
on the 39th Page (“Extension to Multiple Classes”) of the lecture notes of L4, derive
the learning procedure of regularized logistic regression for multi-class classiffcation
problems.
Hint: deffne a loss function by borrowing an idea from binary classiffcation, and
derive the gradient descent rules to update {w(c)}’s.
Question 2 (5 marks): This is a hands-on exercise to use the SVC API of scikitlearn
1
to
 train a SVM with the linear kernel and the rbf kernel, respectively, on a binary
classiffcation dataset. The details of instructions are described as follows.
1. Download the a9a dataset from the LIBSVM Dataset page.
This is a preprocessed dataset of the Adult dataset in the UCI Irvine Machine
Learning Repository
2
, which consists of a training set (available here) and a test
set (available here).
Each ffle (the train set or the test set) is a text format in which each line represents
a labeled data instance as follows:
label index1:value1 index2:value2 ...
where “label” denotes the class label of each instance, “indexT” denotes the
T-th feature, and valueT denotes the value of the T-th feature of the instance.
1Read Pages 63-64 of the lecture notes of L5 for reference
2The details of the original Adult dataset can be found here.
1This is a sparse format, where only non-zero feature values are stored for each
instance. For example, suppose given a data set, where each data instance has 5
dimensions (features). If a data instance whose label is “+1” and the input data
instance vector is [2 0 2.5 4.3 0], then it is presented in a line as
+1 1:2 3:2.5 4:4.3
Hint: sciki-learn provides an API (“sklearn.datasets.load svmlight ffle”) to load
such a sparse data format. Detailed information is available here.
2. Regarding the linear kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter C in
{0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table. Note that for all the
other parameters, you can simply use the default values or specify the speciffc
values you used in your submitted PDF ffle.
Table 1: The 3-fold cross-validation results of varying values of C in SVC with linear
kernel on the a9a training set (in accuracy).
C = 0.01 C = 0.05 C = 0.1 C = 0.5 C = 1
? ? ? ? ?
3. Regarding the rbf kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter gamma
(i.e., σ
2 on the lecture notes) in {0.01, 0.05, 0.1, 0.5, 1} and different values of
the parameter C in {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table.
Note that for all the other parameters, you can simply use the default values or
specify the speciffc values you used in your submitted PDF ffle.
Table 2: The 3-fold cross-validation results of varying values of gamma and C in SVC
with rbf kernel on the a9a training set (in accuracy).
Hint: there are no speciffc APIs that integrates cross-validation into SVMs in
sciki-learn. However, you can use some APIs under the category “Model Selection
→ Model validation” to implement it. Some examples can be found here.
4. Based on the results shown in Tables **2, determine the best kernel and the best
parameter setting. Use the best kernel with the best parameter setting to train a
SVM using the whole training set and make predictions on test set to generate
the following table:
2Table 3: Test results of SVC on the a9a test set (in accuracy).
Specify which kernel with what parameter setting
Accuracy of SVMs ?
Question 3 (5 marks): The optimization problem of linear soft-margin SVMs can
be re-formulated as an instance of empirical structural risk minimization (refer to Page
37 on L5 notes). Show how to reformulate it. Hint: search reference about the hinge
loss.
Question 4 (5 marks): Using the kernel trick introduced in L5 to extend the regularized
linear regression model (L3) to solve nonlinear regression problems. Derive a
closed-form solution (i.e., to derive a kernelized version of the closed-form solution on
Page 50 of L3).


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:公認口碑最好的十個莆田微商,選擇這10個微商沒錯的
  • 下一篇:COMPSCI 315代做、代寫Python/Java語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          一本色道久久综合一区 | 国产精品免费看| 欧美性色视频在线| 国产精品久久九九| 国产伦理精品不卡| 精品51国产黑色丝袜高跟鞋| 亚洲高清久久| 一区二区三区久久精品| 亚洲你懂的在线视频| 久久久在线视频| 欧美激情1区| 国产农村妇女毛片精品久久莱园子 | 亚洲精品乱码久久久久久日本蜜臀| 亚洲精品人人| 亚洲欧美日韩专区| 久久男人资源视频| 欧美日韩国产三区| 黄色资源网久久资源365| 亚洲免费观看在线观看| 性欧美激情精品| 欧美大胆a视频| 国产精品综合| 亚洲欧洲在线一区| 欧美一区二区播放| 欧美母乳在线| 黄色亚洲大片免费在线观看| 一本久久a久久精品亚洲| 欧美在线观看你懂的| 欧美精彩视频一区二区三区| 国产乱肥老妇国产一区二| 亚洲国产一区二区视频| 午夜精品久久久久久| 欧美成人午夜77777| 国产日产欧产精品推荐色 | 一区二区欧美精品| 久久精品国产久精国产思思| 欧美日韩在线观看视频| 亚洲高清电影| 另类尿喷潮videofree| 国产精品自在线| 亚洲一区三区在线观看| 欧美另类在线观看| 亚洲国产va精品久久久不卡综合| 性8sex亚洲区入口| 国产精品系列在线| 亚洲性人人天天夜夜摸| 欧美日韩国产在线播放网站| 亚洲第一精品影视| 久久在线免费观看视频| 韩国一区二区三区美女美女秀| 午夜精品福利一区二区三区av | 亚洲国产婷婷| 麻豆国产精品一区二区三区 | 久久人体大胆视频| 国产亚洲在线| 欧美一区二区高清| 国产精品中文字幕欧美| 国产精品99久久久久久久久久久久 | 亚洲国产三级| 欧美不卡在线| 日韩亚洲欧美在线观看| 欧美激情亚洲激情| 亚洲精品日韩在线观看| 欧美另类亚洲| 夜夜嗨av一区二区三区四区| 欧美精品手机在线| 99riav1国产精品视频| 欧美日本亚洲| 中文av字幕一区| 国产精品一区二区你懂的| 欧美影院成年免费版| 国产在线高清精品| 老司机精品导航| 亚洲精品国产精品国产自| 欧美日韩中国免费专区在线看| 亚洲无线观看| 国产综合久久久久久鬼色| 久久一区激情| 一本久道久久久| 国产日韩一级二级三级| 另类人畜视频在线| 一区二区精品| 狠狠色综合播放一区二区| 牛牛影视久久网| 亚洲制服欧美中文字幕中文字幕| 国产亚洲一级| 欧美日韩三级电影在线| 久久福利影视| 一本久道久久综合狠狠爱| 国产精品一区二区黑丝| 久久综合狠狠综合久久综青草| 亚洲精品在线看| 国产午夜精品理论片a级大结局 | 久久久精品久久久久| 亚洲精品美女91| 国产午夜精品全部视频播放 | 欧美风情在线| 亚洲欧美视频一区二区三区| 影音先锋国产精品| 欧美三级韩国三级日本三斤| 亚洲图中文字幕| 亚洲国产精品电影| 国产日韩精品一区观看| 欧美顶级艳妇交换群宴| 久久精品成人一区二区三区| 亚洲精品免费一区二区三区| 国产偷国产偷亚洲高清97cao| 欧美日韩另类字幕中文| 美日韩精品免费观看视频| 午夜免费在线观看精品视频| 99精品视频网| 亚洲精品久久7777| 黄色精品一区二区| 国产乱码精品一区二区三区忘忧草 | 免费在线成人av| 久久精品视频免费观看| 亚洲午夜极品| 一区二区三区国产| 亚洲精品护士| 91久久夜色精品国产九色| 韩国av一区二区三区| 国产日韩欧美一区| 国产精品美女主播在线观看纯欲| 欧美日韩国产美女| 欧美激情国产日韩| 欧美夫妇交换俱乐部在线观看| 久久久久久久一区| 久久精品72免费观看| 欧美一级淫片播放口| 午夜精品久久一牛影视| 亚洲淫性视频| 欧美一区二区视频在线| 欧美夜福利tv在线| 欧美一区二区在线| 亚洲欧美bt| 羞羞色国产精品| 久久爱www| 久久综合99re88久久爱| 蜜桃av一区| 欧美激情1区| 欧美日韩在线播放一区| 国产精品极品美女粉嫩高清在线| 欧美性久久久| 国产精品一二一区| 国产亚洲激情视频在线| 激情偷拍久久| 亚洲精品免费一二三区| 一区二区三区日韩欧美精品| 亚洲视频一起| 欧美一区二区三区精品| 美女免费视频一区| 欧美日韩视频在线一区二区观看视频| 欧美日韩亚洲视频| 国产视频精品xxxx| 亚洲国产精品成人综合| 亚洲靠逼com| 欧美一区二区在线看| 久久夜色撩人精品| 欧美日韩国内自拍| 国产一区在线看| 亚洲国产免费看| 亚洲一区一卡| 免费视频久久| 国产精品videosex极品| 黑人巨大精品欧美一区二区| 91久久精品国产91久久| 国产精品99久久99久久久二8 | 亚洲一区二区三区精品在线观看| 欧美一区二区三区在线播放| 你懂的一区二区| 国产精品推荐精品| 亚洲精品久久久久久久久久久久| 亚洲视频自拍偷拍| 美女视频网站黄色亚洲| 欧美日韩亚洲一区二区三区四区 | 国产精品毛片一区二区三区| 一区二区亚洲精品国产| 一区二区三区国产在线观看| 久久免费99精品久久久久久| 欧美午夜一区二区福利视频| 亚洲成人资源| 欧美影院成年免费版| 欧美激情第二页| 国模精品娜娜一二三区| 一本色道久久综合亚洲精品小说 | 欧美日韩一区二区高清| 樱桃成人精品视频在线播放| 亚洲欧美精品在线| 欧美人与性动交cc0o| 激情一区二区三区| 香蕉成人伊视频在线观看| 欧美精品91| 最新精品在线| 久久女同精品一区二区| 国产精品老女人精品视频| 亚洲精品日韩激情在线电影| 快射av在线播放一区| 国产一区二区三区久久悠悠色av| 亚洲婷婷在线| 欧美日本簧片|