99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP5328代做、代寫Python程序語言
COMP5328代做、代寫Python程序語言

時間:2024-09-23  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



COMP5**8 - Advanced Machine Learning
Assignment 1
Due: 19/09/2024, 11:59PM
This assignment is to be completed in groups of 3 to 4 students. It is worth 25%
of your total mark.
1 Objective
The objective of this assignment is to implement Non-negative Matrix Factorization
 (NMF) algorithms and analyze the robustness of NMF algorithms when the
dataset is contaminated by large magnitude noise or corruption. More speciffcally,
you should implement at least two NMF algorithms and compare their robustness.
2 Instructions
2.1 Dataset description
In this assignment, you need to apply NMF algorithms on two real-world face
image datasets: (1) ORL dataset
1
; (2) Extended YaleB dataset
2
.
• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images
per subject). For some subjects, the images were taken at different times,
varying the lighting, facial expressions and facial details (glasses / no glasses).
All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position. All images are cropped and resized
to 92×112 pixels.
• Extended YaleB dataset: it contains 2414 images of 38 subjects under
9 poses and 64 illumination conditions. All images are manually aligned,
cropped, and then resized to 168×192 pixels.
1https://cam-orl.co.uk/facedatabase.html
2http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
1Figure 1: An example face image and its occluded versions by b × b-blocks with
b = 10, 12, and 14 pixels.
Note: we provide a tutorial for this assignment, which contains example code for
loading a dataset to numpy array. Please ffnd more details in assignment1.ipynb.
2.2 Assignment tasks
1. You need to implement at least two Non-negative Matrix Factorization (NMF)
algorithms:
• You should implement at least two NMF algorithms with at least one
not taught in this course (e.g., L**Norm Based NMF, Hypersurface Cost
Based NMF, L**Norm Regularized Robust NMF, and L2,**Norm Based
NMF).
• For each algorithm, you need to describe the deffnition of the objective
function as well as the optimization methods used in your implementation.
2.
 You need to analyze the robustness of each algorithm on two datasets:
• You are allowed to design your own data preprocessing method (if necessary).

You need to use a block-occlusion noise similar to those shown in Figure
1. The noise is generated by setting the pixel values to be 255 in the
block. You can design your own value for b (not neccessary to be 10, 12
or 14). You are also encouraged to design your own noise other than
the block-occlusion noise.
2• You need to demonstrate each type of noise used in your experiment
(show the original image as well as the image contaminated by noise).
• You should carefully choose the NMF algorithms and design experiment
settings to clearly show the different robustness of the algorithms you
have implemented.
3. You are only allowed to use the python standard library, numpy and
scipy (if necessary) to implement NMF algorithms.
2.3 Programming and External Libraries
This assignment is required to be ffnished by Python3. When you implement
NMF algorithms, you are not allowed to use external libraries which contains
NMF implementations, such as scikit-learn, and Nimfa (i.e., you have to implement
 the NMF algorithms by yourself). You are allowed to use scikit-learn
for evaluation only (please ffnd more details in assignment1.ipynb). If you have
any ambiguity whether you can use a particular library or a function, please post
on canvas under the ”Assignment 1” thread.
2.4 Evaluate metrics
To compare the performance and robustness of different NMF algorithms, we provide
 three evaluation metrics: (1) Relative Reconstruction Errors; (2) Average
Accuracy (optional); (3) Normalized Mutual Information (optional). For all
experiments, you need to use at least one metric, i.e., Relative Reconstruction
 Errors. You are encouraged to use the other two metrics, i.e., Average
Accuracy and Normalized Mutual Information.
• Relative Reconstruction Errors (RRE): let V denote the contaminated
dataset (by adding noise), and Vˆ denote the clean dataset. Let W and H
denote the factorization results on V , the relative reconstruction errors
then can be deffned as follows:
RRE =
∥Vˆ − WH∥F
∥Vˆ ∥F
. (1)
• Average Accuracy: Let W and H denote the factorization results on
V , you need to perform some clustering algorithms (i.e., K-means) with
num clusters equal to num classes. Each example is assigned with the
cluster label (please ffnd more details in assignment1.ipynb). Lastly, you
3can evaluate the accuracy of predictions Ypred as follows:
Acc(Y, Ypred) =
 1
n
Xn
i=1
1{Ypred(i) == Y (i)}.
• Normalized Mutual Information (NMI):
NMI(Y, Ypred) =
2I(Y, Ypred)
H(Y ) + H(Ypred)
,
where I(·, ·) is mutual information and H(·) is entropy.
Note: we expect you to have a rigorous performance evaluation. To provide
an estimate of the performance of the algorithms in the report, you can repeat
multiple times (e.g., 5 times) for each experiment by randomly sampling **% data
from the whole dataset, and average the metrics on different subset. You are also
required to report the standard deviations.
3 Report
The report should be organized similar to research papers, and should contain the
following sections:
• In abstract, you should brieffy introduce the topic of this assignment and
describe the organization of your report.
• In introduction, you should ffrst introduce the main idea of NMF as well
as its applications. You should then give an overview of the methods you
want to use.
• In related work, you are expected to review the main idea of related NMF
algorithms (including their advantages and disadvantages).
• In methods, you should describe the details of your method (including
the deffnition of cost functions as well as optimization steps). You should
also describe your choices of noise and you are encouraged to explain the
robustness of each algorithm from theoretical view.
• In experiment, ffrstly, you should introduce the experimental setup (e.g.,
datasets, algorithms, and noise used in your experiment for comparison).
Second, you should show the experimental results and give some comments.
• In conclusion, you should summarize your results and discuss your insights
for future work.
4• In reference, you should list all references cited in your report and formatted
all references in a consistent way.
The layout of the report:
• Font: Times New Roman; Title: font size 14; Body: font size 12
• Length: Ideally 10 to 15 pages - maximum 20 pages
Note: Submissions must be typeset in LaTex using the provided template.
4 Submissions
Detailed instructions are as follows:
1. The submission contains two parts: report and source code.
(a) report (a pdf ffle): the report should include each member’s details
(student id and name).
(b) code (a compressed folder)
i. algorithm (a sub-folder): your code could be multiple ffles.
ii. data (an empty sub-folder): although two datasets should be inside
the data folder, please do not include them in the zip ffle. We will
copy two datasets to the data folder when we test the code.
2. The report (ffle type: pdf) and the codes (ffle type: zip) must be named
as student ID numbers of all group members separated by underscores. For
example, “xxxxxxxx xxxxxxxx xxxxxxxx.pdf”.
3. OOnly one student needs to submit your report (ffle type: pdf) to Assignment
 1 (report) and upload your codes (ffle type: zip) to Assignment 1
(codes).
4. Your submission should include the report and the code. A plagiarism
checker will be used.
5. You need to clearly provide instructions on how to run your code in the
appendix of the report.
6. You need to indicate the contribution of each group member.
7. A penalty of minus 5 (5%) marks per each day after due (email late submissions
 to TA and conffrm late submission dates with TA). Maximum delay is
10 days, after that assignments will not be accepted.
55 Marking scheme
Category Criterion Marks Comments
Report [80]
 Abstract [3]
•problem, methods, organization.
Introduction [5]
•What is the problem you intend to solve?
•Why is this problem important?
Previous work [6]
•Previous relevant methods used in literature?
Methods [25]
•Pre-processing (if any)
•NMF Algorithm’s formulation.
•Noise choice and description.
Experiments and Discussions [25]
•Experiments, comparisons and evaluation
•Extensive analysis and discussion of results
•Relevant personal reflection
Conclusions and Future work [3]
•Meaningful conclusions based on results
•Meaningful future work suggested
Presentation [5]
•Grammatical sentences, no spelling mistakes
•Good structure and layout, consistent formatting
•Appropriate
citation and referencing
•Use graphs and tables to summarize data
Other [8]
•At the discretion of the marker: for impressing
the marker, excelling expectation,
etc. Examples include clear presentation,
well-designed experiment, fast code, etc.
6Category Criterion Marks Comments
Code [20]
•Code runs within a feasible time
•Well organized, commented and documented
Penalties [−]
•Badly written code: [−20]
•Not including instructions on how to run
your code: [−20]
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero).
7

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代做4CM508、SQL編程語言代寫
  • 下一篇:CEG 4136代做、代寫Java/c++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美亚洲一区在线| 亚洲一级二级| 国产日韩精品视频一区二区三区| 久久精品视频va| 久久精品国产99| 欧美一区二区在线看| 亚欧成人在线| 欧美一区二区三区免费观看视频| 亚洲一区亚洲| 午夜久久影院| 午夜欧美大片免费观看| 亚洲小少妇裸体bbw| 中文在线资源观看网站视频免费不卡| 91久久久久久| 一区二区日韩欧美| 国产精品99久久久久久有的能看| 亚洲综合电影| 久久久久se| 欧美精品免费观看二区| 欧美香蕉视频| 伊人激情综合| 日韩午夜电影av| 亚洲精品在线免费| 一区二区三区蜜桃网| 午夜国产不卡在线观看视频| 欧美在线视屏| 嫩模写真一区二区三区三州| 欧美三级小说| 国产亚洲欧美一区二区| 国产一区二区三区网站| 亚洲国产日韩美| 亚洲天堂av图片| 久久久精品欧美丰满| 欧美aⅴ一区二区三区视频| 欧美系列一区| 国产亚洲成人一区| 亚洲人成绝费网站色www| 一本一本久久| 免费观看在线综合| 国产精品中文字幕欧美| 亚洲国产精品传媒在线观看| 亚洲综合日韩| 欧美精品七区| 激情欧美一区二区三区在线观看| 日韩一区二区精品葵司在线| 欧美在线三区| 欧美亚洲第一页| 亚洲人成艺术| 久久精品成人欧美大片古装| 欧美午夜三级| 99国产精品久久| 裸体歌舞表演一区二区| 欧美四级在线| 亚洲精品欧洲| 美女啪啪无遮挡免费久久网站| 国产精品区一区| 日韩天天综合| 欧美成人69av| 亚洲国产精品va在看黑人| 欧美亚洲一区二区三区| 欧美日韩精品三区| 亚洲九九爱视频| 欧美国产精品日韩| 亚洲国产日韩一级| 久久久国产精彩视频美女艺术照福利| 国产精品99一区二区| 99成人精品| 老司机aⅴ在线精品导航| 国产精品免费网站在线观看| 亚洲最新在线视频| 欧美日韩亚洲一区二区三区| 日韩亚洲欧美一区二区三区| 欧美二区在线| 一本色道久久88综合亚洲精品ⅰ| 欧美激情1区2区| 亚洲精品乱码久久久久久久久| 欧美在线一区二区| 精品动漫3d一区二区三区免费版 | 国产农村妇女精品一区二区| 亚洲图片在线观看| 国产精品国产精品国产专区不蜜| 一区二区三区精品视频在线观看| 欧美视频在线观看一区二区| 一区二区久久久久| 国产精品久久久久久久久搜平片 | 国产精品综合| 亚洲欧美日产图| 国产偷国产偷亚洲高清97cao| 欧美在线观看你懂的| 国产一区清纯| 久久美女艺术照精彩视频福利播放| 国语对白精品一区二区| 欧美1级日本1级| 中日韩视频在线观看| 欧美午夜宅男影院在线观看| 亚洲亚洲精品在线观看| 国产亚洲精品一区二区| 免费欧美日韩| 这里只有精品在线播放| 国产女人aaa级久久久级| 久久精品99无色码中文字幕| 激情视频亚洲| 欧美日韩一区二区免费在线观看 | 国产精品区免费视频| 欧美在线视频观看| 亚洲国产另类久久久精品极度| 欧美日韩在线播放一区| 午夜精品视频网站| 亚洲电影欧美电影有声小说| 欧美日韩在线影院| 欧美一区激情| 亚洲国产精品成人久久综合一区| 欧美日韩直播| 久久亚洲欧美国产精品乐播| 制服丝袜亚洲播放| 国产欧美日韩亚州综合| 免费在线国产精品| 欧美一级理论性理论a| 最近中文字幕日韩精品| 国产欧美日韩一区二区三区在线观看| 欧美ab在线视频| 欧美在线视频一区二区| 亚洲人成毛片在线播放| 国产日韩在线一区| 欧美日韩国产一区二区| 久久精品视频播放| 亚洲三级色网| 欧美区亚洲区| 欧美另类人妖| 欧美剧在线观看| 欧美久久影院| 欧美三级网页| 国产精品久久久免费| 欧美日一区二区三区在线观看国产免| 欧美精品久久一区| 欧美精品一级| 国产精品国产三级国产aⅴ浪潮| 欧美精品观看| 欧美日韩在线视频一区| 欧美色欧美亚洲另类七区| 欧美日韩中文字幕在线| 国产精品美女久久久久久免费| 国产精品一区二区三区免费观看| 国产精品亚洲一区| 国内一区二区三区| 亚洲国产精品欧美一二99| 亚洲乱码国产乱码精品精 | 国产精品麻豆va在线播放| 国产精品久久福利| 国产一区二区三区在线观看精品 | 日韩一级片网址| 亚洲午夜黄色| 久久久精品国产免大香伊| 开心色5月久久精品| 欧美精品1区2区3区| 国产精品久久久久一区二区三区| 国产精品成人va在线观看| 国产欧美一区二区精品秋霞影院| 国内外成人免费视频| 妖精成人www高清在线观看| 亚洲欧美国产三级| 久久综合色一综合色88| 欧美日韩精品免费观看| 国产乱人伦精品一区二区| 尤物精品国产第一福利三区| 亚洲精品一区二区三区四区高清| 亚洲中字黄色| 欧美国产日韩一区二区在线观看 | 香蕉成人久久| 男女精品网站| 国产精品一区视频| 亚洲精品久久久久久久久久久久久| 亚洲尤物视频在线| 欧美1区3d| 国产性天天综合网| 日韩视频―中文字幕| 午夜精品福利视频| 欧美美女福利视频| 精品不卡视频| 午夜视频在线观看一区| 欧美黄色免费网站| 狠狠噜噜久久| 午夜视频久久久| 欧美日韩亚洲一区二区三区在线观看| 国产一区二区三区高清在线观看 | 伊人久久久大香线蕉综合直播| 9久re热视频在线精品| 久久亚洲欧美| 国产乱码精品一区二区三区忘忧草 | 欧美日韩中国免费专区在线看| 韩国精品主播一区二区在线观看| 亚洲视频欧美视频| 欧美美女bb生活片| 亚洲欧洲美洲综合色网| 久久躁狠狠躁夜夜爽| 国产婷婷成人久久av免费高清| 日韩一区二区免费高清| 美女视频黄免费的久久| 国内精品美女av在线播放| 亚洲欧美在线免费观看|