99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP5328代做、代寫Python程序語言
COMP5328代做、代寫Python程序語言

時間:2024-09-23  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



COMP5**8 - Advanced Machine Learning
Assignment 1
Due: 19/09/2024, 11:59PM
This assignment is to be completed in groups of 3 to 4 students. It is worth 25%
of your total mark.
1 Objective
The objective of this assignment is to implement Non-negative Matrix Factorization
 (NMF) algorithms and analyze the robustness of NMF algorithms when the
dataset is contaminated by large magnitude noise or corruption. More speciffcally,
you should implement at least two NMF algorithms and compare their robustness.
2 Instructions
2.1 Dataset description
In this assignment, you need to apply NMF algorithms on two real-world face
image datasets: (1) ORL dataset
1
; (2) Extended YaleB dataset
2
.
• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images
per subject). For some subjects, the images were taken at different times,
varying the lighting, facial expressions and facial details (glasses / no glasses).
All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position. All images are cropped and resized
to 92×112 pixels.
• Extended YaleB dataset: it contains 2414 images of 38 subjects under
9 poses and 64 illumination conditions. All images are manually aligned,
cropped, and then resized to 168×192 pixels.
1https://cam-orl.co.uk/facedatabase.html
2http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
1Figure 1: An example face image and its occluded versions by b × b-blocks with
b = 10, 12, and 14 pixels.
Note: we provide a tutorial for this assignment, which contains example code for
loading a dataset to numpy array. Please ffnd more details in assignment1.ipynb.
2.2 Assignment tasks
1. You need to implement at least two Non-negative Matrix Factorization (NMF)
algorithms:
• You should implement at least two NMF algorithms with at least one
not taught in this course (e.g., L**Norm Based NMF, Hypersurface Cost
Based NMF, L**Norm Regularized Robust NMF, and L2,**Norm Based
NMF).
• For each algorithm, you need to describe the deffnition of the objective
function as well as the optimization methods used in your implementation.
2.
 You need to analyze the robustness of each algorithm on two datasets:
• You are allowed to design your own data preprocessing method (if necessary).

You need to use a block-occlusion noise similar to those shown in Figure
1. The noise is generated by setting the pixel values to be 255 in the
block. You can design your own value for b (not neccessary to be 10, 12
or 14). You are also encouraged to design your own noise other than
the block-occlusion noise.
2• You need to demonstrate each type of noise used in your experiment
(show the original image as well as the image contaminated by noise).
• You should carefully choose the NMF algorithms and design experiment
settings to clearly show the different robustness of the algorithms you
have implemented.
3. You are only allowed to use the python standard library, numpy and
scipy (if necessary) to implement NMF algorithms.
2.3 Programming and External Libraries
This assignment is required to be ffnished by Python3. When you implement
NMF algorithms, you are not allowed to use external libraries which contains
NMF implementations, such as scikit-learn, and Nimfa (i.e., you have to implement
 the NMF algorithms by yourself). You are allowed to use scikit-learn
for evaluation only (please ffnd more details in assignment1.ipynb). If you have
any ambiguity whether you can use a particular library or a function, please post
on canvas under the ”Assignment 1” thread.
2.4 Evaluate metrics
To compare the performance and robustness of different NMF algorithms, we provide
 three evaluation metrics: (1) Relative Reconstruction Errors; (2) Average
Accuracy (optional); (3) Normalized Mutual Information (optional). For all
experiments, you need to use at least one metric, i.e., Relative Reconstruction
 Errors. You are encouraged to use the other two metrics, i.e., Average
Accuracy and Normalized Mutual Information.
• Relative Reconstruction Errors (RRE): let V denote the contaminated
dataset (by adding noise), and Vˆ denote the clean dataset. Let W and H
denote the factorization results on V , the relative reconstruction errors
then can be deffned as follows:
RRE =
∥Vˆ − WH∥F
∥Vˆ ∥F
. (1)
• Average Accuracy: Let W and H denote the factorization results on
V , you need to perform some clustering algorithms (i.e., K-means) with
num clusters equal to num classes. Each example is assigned with the
cluster label (please ffnd more details in assignment1.ipynb). Lastly, you
3can evaluate the accuracy of predictions Ypred as follows:
Acc(Y, Ypred) =
 1
n
Xn
i=1
1{Ypred(i) == Y (i)}.
• Normalized Mutual Information (NMI):
NMI(Y, Ypred) =
2I(Y, Ypred)
H(Y ) + H(Ypred)
,
where I(·, ·) is mutual information and H(·) is entropy.
Note: we expect you to have a rigorous performance evaluation. To provide
an estimate of the performance of the algorithms in the report, you can repeat
multiple times (e.g., 5 times) for each experiment by randomly sampling **% data
from the whole dataset, and average the metrics on different subset. You are also
required to report the standard deviations.
3 Report
The report should be organized similar to research papers, and should contain the
following sections:
• In abstract, you should brieffy introduce the topic of this assignment and
describe the organization of your report.
• In introduction, you should ffrst introduce the main idea of NMF as well
as its applications. You should then give an overview of the methods you
want to use.
• In related work, you are expected to review the main idea of related NMF
algorithms (including their advantages and disadvantages).
• In methods, you should describe the details of your method (including
the deffnition of cost functions as well as optimization steps). You should
also describe your choices of noise and you are encouraged to explain the
robustness of each algorithm from theoretical view.
• In experiment, ffrstly, you should introduce the experimental setup (e.g.,
datasets, algorithms, and noise used in your experiment for comparison).
Second, you should show the experimental results and give some comments.
• In conclusion, you should summarize your results and discuss your insights
for future work.
4• In reference, you should list all references cited in your report and formatted
all references in a consistent way.
The layout of the report:
• Font: Times New Roman; Title: font size 14; Body: font size 12
• Length: Ideally 10 to 15 pages - maximum 20 pages
Note: Submissions must be typeset in LaTex using the provided template.
4 Submissions
Detailed instructions are as follows:
1. The submission contains two parts: report and source code.
(a) report (a pdf ffle): the report should include each member’s details
(student id and name).
(b) code (a compressed folder)
i. algorithm (a sub-folder): your code could be multiple ffles.
ii. data (an empty sub-folder): although two datasets should be inside
the data folder, please do not include them in the zip ffle. We will
copy two datasets to the data folder when we test the code.
2. The report (ffle type: pdf) and the codes (ffle type: zip) must be named
as student ID numbers of all group members separated by underscores. For
example, “xxxxxxxx xxxxxxxx xxxxxxxx.pdf”.
3. OOnly one student needs to submit your report (ffle type: pdf) to Assignment
 1 (report) and upload your codes (ffle type: zip) to Assignment 1
(codes).
4. Your submission should include the report and the code. A plagiarism
checker will be used.
5. You need to clearly provide instructions on how to run your code in the
appendix of the report.
6. You need to indicate the contribution of each group member.
7. A penalty of minus 5 (5%) marks per each day after due (email late submissions
 to TA and conffrm late submission dates with TA). Maximum delay is
10 days, after that assignments will not be accepted.
55 Marking scheme
Category Criterion Marks Comments
Report [80]
 Abstract [3]
•problem, methods, organization.
Introduction [5]
•What is the problem you intend to solve?
•Why is this problem important?
Previous work [6]
•Previous relevant methods used in literature?
Methods [25]
•Pre-processing (if any)
•NMF Algorithm’s formulation.
•Noise choice and description.
Experiments and Discussions [25]
•Experiments, comparisons and evaluation
•Extensive analysis and discussion of results
•Relevant personal reflection
Conclusions and Future work [3]
•Meaningful conclusions based on results
•Meaningful future work suggested
Presentation [5]
•Grammatical sentences, no spelling mistakes
•Good structure and layout, consistent formatting
•Appropriate
citation and referencing
•Use graphs and tables to summarize data
Other [8]
•At the discretion of the marker: for impressing
the marker, excelling expectation,
etc. Examples include clear presentation,
well-designed experiment, fast code, etc.
6Category Criterion Marks Comments
Code [20]
•Code runs within a feasible time
•Well organized, commented and documented
Penalties [−]
•Badly written code: [−20]
•Not including instructions on how to run
your code: [−20]
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero).
7

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代做4CM508、SQL編程語言代寫
  • 下一篇:CEG 4136代做、代寫Java/c++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                免费看日韩精品| 精品日产卡一卡二卡麻豆| 亚洲综合久久久| 国产精品久久免费看| 欧美成人精品福利| 欧美另类久久久品| 精品视频一区三区九区| 99r精品视频| www.亚洲精品| k8久久久一区二区三区| 国产精品自拍av| 久久国产综合精品| 久久精工是国产品牌吗| 国内一区二区在线| 国产一区二区三区精品视频| 蜜臀av性久久久久蜜臀aⅴ流畅| 日韩成人精品在线| 蜜乳av一区二区| 国产成人av影院| 国产99精品视频| 北条麻妃国产九九精品视频| 成人av免费观看| 成人黄色a**站在线观看| 秋霞电影网一区二区| 日产欧产美韩系列久久99| 日韩在线一区二区三区| 日韩avvvv在线播放| 青青草国产精品97视觉盛宴| 国产精品区一区二区三区| 欧美日韩精品欧美日韩精品一| 国产一区二区主播在线| 成人av资源在线观看| 国产成人久久精品77777最新版本| 国产一区二区看久久| 高清国产午夜精品久久久久久| 福利一区二区在线| 欧美性大战久久久| 欧美精品1区2区3区| 欧美一区二区久久久| 国产精品久久久久婷婷| 一区二区三区国产精华| 国产·精品毛片| 久久国产精品色| 在线免费av一区| 国产精品456| 亚洲国产电影在线观看| 国产精品女同互慰在线看| 免费成人av资源网| 亚洲欧美视频在线观看视频| 精品99久久久久久| 91精品视频网| 国产精品免费视频一区| 日韩精品1区2区3区| 成人动漫中文字幕| 日韩欧美在线网站| 亚洲国产一区二区三区| 国产成人在线色| 91精品欧美久久久久久动漫| 综合久久国产九一剧情麻豆| 久久99国产精品免费| 欧美性生活一区| 成人免费在线观看入口| 国产精华液一区二区三区| 欧美精品在线一区二区三区| 青草av.久久免费一区| 97se亚洲国产综合自在线不卡 | 亚洲男人的天堂av| 秋霞电影一区二区| 欧美精品一区二区三区蜜臀 | 国产麻豆欧美日韩一区| 欧美人妇做爰xxxⅹ性高电影| 艳妇臀荡乳欲伦亚洲一区| 精品视频在线免费| 蜜臀av性久久久久蜜臀aⅴ| 国产亚洲视频系列| 成人精品电影在线观看| 欧美韩国日本不卡| 麻豆成人综合网| 加勒比av一区二区| 欧美精品一区二区高清在线观看| 国产一区欧美一区| 欧美日韩亚洲综合| 亚洲女女做受ⅹxx高潮| 在线电影欧美成精品| 亚洲福利电影网| 欧美亚男人的天堂| 亚洲午夜在线电影| 欧洲人成人精品| 亚洲国产色一区| 91精品国产色综合久久不卡蜜臀 | 日韩亚洲欧美中文三级| 午夜视频在线观看一区二区| 欧美剧情电影在线观看完整版免费励志电影 | 视频精品一区二区| 欧美精品九九99久久| 日本欧美一区二区三区乱码| 日韩午夜电影av| 韩国欧美国产1区| 欧美极品aⅴ影院| av不卡免费在线观看| 亚洲午夜在线电影| 日韩一本二本av| 国产高清在线精品| 亚洲三级免费电影| 欧美福利视频一区| 精品制服美女久久| 欧美激情在线看| 91福利在线看| 免费xxxx性欧美18vr| 国产欧美一区二区精品婷婷| www..com久久爱| 午夜精品久久久久久久久久久| 日韩欧美一区在线观看| 国产91在线|亚洲| 亚洲最大的成人av| 精品日韩在线观看| 99re成人在线| 青青国产91久久久久久| 国产欧美一二三区| 欧美三级电影精品| 国产麻豆精品95视频| 一区二区激情视频| 久久综合精品国产一区二区三区 | 日韩欧美一区二区免费| 国产成人精品三级| 亚洲宅男天堂在线观看无病毒| 精品久久久久av影院| 97久久精品人人爽人人爽蜜臀| 五月激情丁香一区二区三区| 2014亚洲片线观看视频免费| 91尤物视频在线观看| 精品中文字幕一区二区小辣椒| 亚洲视频每日更新| 久久久亚洲精品石原莉奈| 欧美日韩免费观看一区三区| 成人黄色综合网站| 久久国产精品色婷婷| 舔着乳尖日韩一区| 亚洲精品视频在线| 国产精品久久久久久亚洲伦| 日韩亚洲欧美在线观看| 欧美综合欧美视频| 9人人澡人人爽人人精品| 国产精品一区二区男女羞羞无遮挡| 亚洲成在人线在线播放| 亚洲丝袜制服诱惑| 国产欧美一区二区三区沐欲| 欧美电影免费观看高清完整版在线观看| 91麻豆免费看片| 激情另类小说区图片区视频区| 欧美日韩一区二区欧美激情 | 色婷婷亚洲婷婷| 久久久久久免费网| 奇米亚洲午夜久久精品| 欧美日韩一级大片网址| 视频一区二区三区中文字幕| 欧美日韩国产三级| 美女爽到高潮91| 国产视频一区不卡| 91丨porny丨户外露出| 亚洲小说欧美激情另类| 日韩一级片在线观看| 大白屁股一区二区视频| 中文字幕亚洲电影| 日本高清不卡视频| 欧美综合在线视频| 亚洲激情欧美激情| 中文字幕在线不卡国产视频| 国内精品第一页| 欧美三级在线看| 韩国三级在线一区| 国产精品欧美一级免费| 精品福利在线导航| 美腿丝袜亚洲一区| 欧美日韩一级片在线观看| 91麻豆精品国产91久久久久| 欧美午夜免费电影| 4438成人网| 日韩精品综合一本久道在线视频| 精品一区二区三区免费视频| 精品制服美女久久| 国产成人精品亚洲日本在线桃色| 波多野结衣在线aⅴ中文字幕不卡| av中文字幕在线不卡| 日本电影亚洲天堂一区| 欧美精品在线一区二区三区| 精品日本一线二线三线不卡| 国产欧美日韩精品在线| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆 | 一本色道久久加勒比精品| 色综合久久综合中文综合网| 欧美羞羞免费网站| 2017欧美狠狠色| 国产精品免费网站在线观看| 亚洲最大色网站| 韩国精品主播一区二区在线观看| 成人免费视频app| 欧美色中文字幕| 久久久久九九视频| 亚洲精品成人悠悠色影视|