99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫COMP3702、python語言程序代做
代寫COMP3702、python語言程序代做

時間:2024-09-22  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



COMP3702 Artificial Intelligence (Semester 2, 2024)
Assignment 2: BeeBot MDP
Key information:
• Due: 1pm, Friday 20 September 2024
• This assignment assesses your skills in developing discrete search techniques for challenging problems.
• Assignment 1 contributes 20% to your final grade.
• This assignment consists of two parts: (1) programming and (2) a report.
• This is an individual assignment.
• Both code and report are to be submitted via Gradescope (https://www.gradescope.com/). You
can find a link to the COMP3702 Gradescope site on Blackboard.
• Your code (Part 1) will be graded using the Gradescope code autograder, using the testcases in the
support code provided at https://github.com/comp3702/2024-Assignment-2-Support-Code.
• Your report (Part 2) should fit the template provided, be in .pdf format and named according to the
format a2-COMP3702-[SID].pdf. Reports will be graded by the teaching team.
The BeeBot AI Environment
You have been tasked with developing a planning algorithm for automatically controlling BeeBot, a Bee
which operates in a hexagonal environment, and has the capability to push, pull and rotate honey ‘Widgets’
in order to reposition them to target honeycomb locations. To aid you in this task, we have provided support
code for the BeeBot environment which you will interface with to develop your solution. To optimally solve
a level, your AI agent must efficiently find a sequence of actions so that every Target cell is occupied by part
of a Widget, while incurring the minimum possible action cost.
For A2, the BeeBot environment has been extended to model non-deterministic outcomes of actions. Cost
and action validity are now replaced by a reward function where action costs are represented by negative
received rewards, with additional penalties (i.e., negative rewards) being incurred when a collision occurs
(between the Bee or a honey Widget and an obstacle, or between Widgets). Updates to the game environment
are indicated in pink font.
Levels in BeeBot are composed of a Hexagonal grid of cells, where each cell contains a character representing
the cell type. An example game level is shown in Figure 1.
1COMP3702 Assignment 2: BeeBot MDP
Figure 1: Example game level of BeeBot, showing character-based and GUI visualiser representations
Environment representation
Hexagonal Grid
The environment is represented by a hexagonal grid. Each cell of the hex grid is indexed by (row, column)
coordinates. The hex grid is indexed top to bottom, left to right. That is, the top left corner has coordinates
(0, 0) and the bottom right corner has coordinates (nrows − 1, ncols − 1). Even numbered columns (starting
from zero) are in the top half of the row, and odd numbered columns are in the bottom half of the row. An
example is shown in Figure 2.
Figure 2: Example hexagonal grid showing the order that rows and columns are indexed
Two cells in the hex grid are considered adjacent if they share an edge. For each non-border cell, there are 6
adjacent cells.
The BeeBot Agent and its Actions
The BeeBot Bee occupies a single cell in the hex grid. In the visualisation, the Bee is represented by the
cell marked with the character ‘R’ (or the Bee in the graphical visualiser). The side of the cell marked with
‘*’ (or the arrow in the graphical visualiser) represents the front of the Bee. The state of the Bee is defined
by its (row, column) coordinates and its orientation (i.e. the direction its front side is pointing towards).
At each time step, the agent is prompted to select an action. The Bee has 4 available nominal actions:
• Forward → move to the adjacent cell in the direction of the front of the Bee (keeping the same
orientation)
• Reverse → move to the adjacent cell in the opposite direction to the front of the Bee (keeping the same
orientation)
• Spin Left → rotate left (relative to the Bee’s front, i.e. counterclockwise) by 60 degrees (staying in the
same cell)
• Spin Right → rotate right (i.e. clockwise) by 60 degrees (staying in the same cell)
Page 2COMP3702 Assignment 2: BeeBot MDP
Each time the Bee selects an action, there is a fixed probability (given as a parameter of each testcase) for
the Bee to ‘drift’ by 60 degrees in a clockwise or counterclockwise direction (separate probabilities for each
drift direction) before the selected nominal action is performed. The probability of drift occurring depends on
which nominal action is selected, with some actions more likely to result in drift. Drifting CW and CCW are
mutually exclusive events.
Additionally, there is a fixed probability (also given as a parameter of each testcase) for the Bee to ‘double
move’, i.e. perform the nominal selected action twice. The probability of a double move occurring depends
on which action is selected. Double movement may occur simultaneously with drift (CW or CCW).
The reward received after each action is the minimum/most negative out of the rewards received for the
nominal action and any additional (drift/double move) actions.
The Bee is equipped with a gripper on its front side which allows it to manipulate honey Widgets. When the
Bee is positioned with its front side adjacent to a honey Widget, performing the ‘Forward’ action will result in
the Widget being pushed, while performing the ‘Reverse’ action will result in the honey Widget being pulled.
Action Costs
Each action has an associated cost, representing the amount of energy used by performing that action.
If the Bee moves without pushing or pulling a honey widget, the cost of the action is given by a base action
cost, ACTION_BASE_COST[a] where ‘a’ is the action that was performed.
If the Bee pushes or pulls a honey widget, an additional cost of ACTION_PUSH_COST[a] is added on top, so
the total cost is ACTION_BASE_COST[a] + ACTION_PUSH_COST[a].
The costs are detailed in the constants.py file of the support code:
ACTION_BASE_COST = {FORWARD: 1.0, REVERSE: 1.0, SPIN_LEFT: 0.1, SPIN_RIGHT: 0.1}
ACTION_PUSH_COST = {FORWARD: 0.8, REVERSE: 0.5, SPIN_LEFT: 0.0, SPIN_RIGHT: 0.0}
Obstacles
Some cells in the hex grid are obstacles. In the visualisation, these cells are filled with the character ‘X’
(represented as black cells in the graphical visualiser). Any action which causes the Bee or any part of
a honey Widget to enter an obstacle results in collision, causing the agent to receive a negative obstacle
collision penalty as reward. This reward replaces the movement cost which the agent would have otherwise
incurred. The outside boundary of the hex grid behaves in the same way as an obstacle.
Additionally, the environment now contains an additional obstacle type, called ‘thorns’. Thorns behave in the
same way as obstacles, but when collision occurs, a different (larger) penalty is received as the reward. As a
result, avoiding collisions with thorns has greater importance than avoiding collisions with obstacles. Thorns
are represented by ‘!!!’ in the text-based visualisation and red cells in the graphical visualisation.
Widgets
Honey Widgets are objects which occupy multiple cells of the hexagonal grid, and can be rotated and translated
by the BeeBot Bee. The state of each honey widget is defined by its centre position (row, column)
coordinates and its orientation. Honey Widgets have rotational symmetries - orientations which are rotationally
symmetric are considered to be the same.
In the visualisation, each honey Widget in the environment is assigned a unique letter ‘a’, ‘b’, ‘c’, etc. Cells
which are occupied by a honey Widget are marked with the letter assigned to that Widget (surrounded by
round brackets). The centre position of the honey Widget is marked by the uppercase version of the letter,
while all other cells occupied by the widget are marked with the lowercase.
Three honey widget types are possible, called Widget3, Widget4 and Widget5, where the trailing number
denotes the number of cells occupied by the honey Widget. The shapes of these three honey Widget types
and each of their possible orientations are shown in Figures 3 to 5 below.
Page 3COMP3702 Assignment 2: BeeBot MDP
VERTICAL
Figure 5: Widget5
Two types of widget movement are possible – translation (change in centre position) and rotation (change in
orientation).
Translation occurs when the Bee is positioned with its front side adjacent to one of the honey widgets’ cells
such that the Bee’s orientation is in line with the honey widget’s centre position. Translation results in the
centre position of the widget moving in the same direction as the Bee. The orientation of the honey Widget
does not change when translation occurs. Translation can occur when either ‘Forward’ or ‘Reverse’ actions
are performed. For an action which results in translation to be valid, the new position of all cells of the moved
widget must not intersect with the environment boundary, obstacles, the cells of any other honey Widgets or
the Bee’s new position.
Rotation occurs when the Bee’s new position intersects one of the cells of a honey Widget but the Bee’s
orientation does not point towards the centre of that widget. Rotation results in the honey widget spinning
around its centre point, causing the widget to change orientation. The position of the centre point does not
change when rotation occurs. Rotation can only occur for the ‘Forward’ action - performing ‘Reverse’ in a
situation where ‘Forward’ would result in a widget rotation is considered invalid.
The following diagrams show which moves result in translation or rotation for each honey Widget type, with
the arrows indicating directions from which the Bee can push or pull a widget in order to cause a translation
or rotation of the widget. Pushing in a direction which is not marked with an arrow is considered invalid.
Page 4COMP3702 Assignment 2: BeeBot MDP
Forward Translate
Reverse Translate
Forward Rotate CW
Reverse Rotate CCW
Figure 6: Widget3 translations and rotations
Forward Translate
Reverse Translate
Forward Rotate CW
Reverse Rotate CCW
Figure 7: Widget4 translations and rotations
Forward Translate
Reverse Translate
Forward Rotate CW
Reverse Rotate CCW
Figure 8: Widget5 translations and rotations
Page 5COMP3702 Assignment 2: BeeBot MDP
Targets
The hex grid contains a number of ‘target’ honeycomb cells which must be filled with honey. In the visualisation,
these cells are marked with ‘tgt’ (cells coloured in orange in the graphical visualiser). For a BeeBot
environment to be considered solved, each target cell must be occupied by part of a honey Widget. The
number of targets in an environment is always less than or equal to the total number of cells occupied by all
honey Widgets.
Interactive mode
A good way to gain an understanding of the game is to play it. You can play the game to get a feel for
how it works by launching an interactive game session from the terminal with the following command for the
graphical visualiser:
$ python play_game.py <input_file>.txt
or the following command for the command-line ASCII-character based visualiser:
$ python play.py <input_file>.txt
where <input_file>.txt is a valid testcase file (from the support code, with path relative to the current
directory), e.g. testcases/ex1.txt.
Depending on your python installation, you should run the code using python, python3 or py.
In interactive mode, type the symbol for your chosen action (and press enter in the command line version) to
perform the action: press ’W’ to move the Bee forward, ’S’ to move the Bee in reverse, ’A’ to turn the Bee
left (counterclockwise) and ’D’ to turn the Bee right (clockwise). Use ’Q’ to quit the simulation, and ’R’ to
reset the environment to the initial configuration.
Page 6COMP3702 Assignment 2: BeeBot MDP
BeeBot as an MDP
In this assignment, you will write the components of a program to play BeeBot, with the objective of
finding a high-quality solution to the problem using various sequential decision-making algorithms based on
the Markov decision process (MDP) framework. This assignment will test your skills in defining a MDP for a
practical problem and developing effective exact algorithms for MDPs.
What is provided to you
We provide supporting code in Python, in the form of:
1. A class representing BeeBot game map and a number of helper functions
2. A parser method to take an input file (testcase) and convert it into a BeeBot map
3. A tester
4. Testcases to test and evaluate your solution
5. A script to allow you to play BeeBot interactively
6. A solution file template
The support code can be found at: https://github.com/comp3702/2024-Assignment-2-Support-Code.
Autograding of code will be done through Gradescope, so that you can evaluate your submission and continue
to improve it based on this feedback — you are strongly encouraged to make use of this feedback. You can
also test locally using the supplied tester.py file.
Your assignment task
Your task is to develop algorithms for computing policies, and to write a report testing your understanding of
and analysing the performance of your algorithms. You will be graded on both your submitted code (Part
1, 60%) and the report (Part 2, 40%). These percentages will be scaled to the 20% course weighting for
this assessment item.
The provided support code formulates BeeBot as an MDP, and your task is to submit code implementing
the following MDP algorithms:
• Value Iteration (VI)
• Policy Iteration (PI)
Individual testcases specify which strategy (value iteration/policy iteration) will be applied, but you may modify
the strategy specified in your local copy of the test cases for the purpose of comparing the performance of
your two algorithms. Note that any local changes you make to the test cases will not modify the test cases
on Gradescope (against which your programming component will be graded). The difficulty of higher level
testcases will be designed to require a more advanced solution (e.g. linear algebra policy iteration).
Once you have implemented and tested the algorithms above, you are to complete the questions listed in the
section “Part 2 - The Report” and submit the report to Gradescope.
More detail of what is required for the programming and report parts are given below.
Page 7COMP3702 Assignment 2: BeeBot MDP
Part 1 — The programming task
Your program will be graded using the Gradescope autograder, using the testcases in the support code provided
at https://github.com/comp3702/2024-Assignment-2-Support-Code.
Interaction with the testcases and autograder
We now provide you with some details explaining how your code will interact with the testcases and the
autograder (with special thanks to Nick Collins and Aryaman Sharma).
Information on the BeeBot implementation is provided in the Assignment 2 Support Code README.md
and code comments.
Implement your solution using the supplied solution.py template file. You are required to fill in the following
method stubs:
• init (game env)
• vi_initialise()
• vi_is_converged()
• vi_iteration()
• vi_plan_offline()
• vi_get_state_value()
• vi_select_action()
• pi_initialise()
• pi_is_converged()
• pi_iteration()
• pi_plan_offline()
• pi_select_action()
You can add additional helper methods and classes (either in solution.py or in files you create) if you wish.
To ensure your code is handled correctly by the autograder, you should avoid using any try-except blocks in
your implementation of the above methods (as this can interfere with our time-out handling). Refer to the
documentation in solution.py for more details.
Grading rubric for the programming component (total marks: 60/100)
For marking, we will use 6 test cases to evaluate your solution. Each test case uses the algorithm specified
as the solver type. Each test case is scored out of 10.0 marks, in the following four categories:
• Agent successfully reaches the goal
• Total reward
• Time elapsed
• Iterations performed
The 10 marks for each test case are evenly divided amongst the four categories (i.e. 2.5 marks are allocated
for each category in each test case).
• Each test case has targets for total reward, time elapsed, and iterations performed.
• Maximum score is achieved when your program matches or beats the target in each category
• Partial marks are available for up to 1.3x total reward, 2x time elapsed and 1.3x number of iterations
• Total mark for the test case is a weighted sum of the scores for each category
• Total code mark is the sum of the marks for each test case
In addition, there is a hidden test which evaluates the correctness of your computed state-values in Value
Iteration. If your values are found to deviate significantly from the correct values, marks may be deducted
from your Gradescope code score. For the programming component of the assignments, the teaching staff will
conduct interviews with a subset of students about their submissions for the purpose of establishing genuine
authorship, as per the Electronic Course Profile.
Page 8COMP3702 Assignment 2: BeeBot MDP
Part 2 — The report
The report tests your understanding of the methods you have used in your code, and contributes 40/100
of your assignment mark. Please make use of the report templates provided on Blackboard, because
Gradescope makes use of a predefined assignment template. Submit your report via Gradescope, in .pdf format,
and named according to the format a2-COMP3702-[SID].pdf, where SID is your student ID. Reports will be
graded by the teaching team.
Your report task is to answer the questions below, in the report template provided.
Question 1. MDP problem definition (15 marks)
a) Define the State space, Action space, Transition function, and Reward function components of the
BeeBot MDP planning agent as well as where these are represented in your code. Ensure you complete
both parts of the question: (10 marks)
i) Define the four components in relation to BeeBot
ii) Identify where they are represented in your code
b) Describe the purpose of a discount factor in MDPs. (2.5 marks)
c) State and briefly justify what the following dimensions of complexity are for the BeeBot MDP agent:
(2.5 marks)
• Planning Horizon
• Sensing Uncertainty
• Effect Uncertainty
• Computational Limits
• Learning
Refer to the P&M textbook https://artint.info/3e/html/ArtInt3e.Ch1.S5.html for the possible
values and definitions of each dimension, and format your answer in a neatly formatted table with
the following column headings: [Dimension, Value, Justification].
Question 2. Comparison of algorithms and optimisations (15 marks)
This question requires comparison of your implementation of Value iteration (VI) and Policy iteration (PI).
If you did not implement PI, you may receive partial marks for this question by providing insightful relevant
comments on your implementation of VI. For example, if you tried standard VI and asynchronous VI, you may
compare these two approaches for partial marks.
a) Describe your implementations of Value Iteration and Policy Iteration in one sentence each. Include
details such as whether you used asynchronous updates, and how you handled policy evaluation in PI.
(2 marks)
b) Pick three representative testcases to compare the performance of VI and PI, reporting the numerical
values for the following performance measures:
• Time to converge to the solution. (3 marks)
• Number of iterations to converge to the solution. (3 marks)
In order to do this, you’ll need to modify the # solver type in your local copy of the test cases (the
text files in the testcases directory).
You should report the numerical results in a neatly formatted table (not screenshots from your computer
or Gradescope).
c) Discuss the difference between the numbers you found for VI and PI, including any differences observed
between testcases. Explain and provide reasons for why the differences either make sense, or do not
make sense. (7 marks)
Page 9COMP3702 Assignment 2: BeeBot MDP
Question 3. Investigating optimal policy variation (10 marks)
One consideration in the solution of a Markov Decision Process (i.e. the optimal policy) is the trade off between
a risky higher reward vs a lower risk lower reward, which depends on the probabilities of non-deterministic
dynamics of the environment and the rewards associated with certain states and actions.
Consider testcase ex6.txt, which includes a risky (but lower cost) path through the top half of the grid, and
a less risky (but higher cost) path through the bottom half of the grid. Explore how the policy of the agent
changes with thorn penalty and transition probabilities.
If you did not implement PI, you may change the solver type to VI in order to answer this question.
a) Describe how you expect the optimal path to change as the thorn penalty and transition
probabilities change. Use facts about the algorithms and Bellman optimality equation to justify
why you expect these changes to have such effects. (5 marks)
b) Picking three suitable values for thorn penalty and three suitable values for the transition
probabilities, explore how the optimal policy changes over the 9 combinations of these factors.
Present the results in a table, clearly denoting the optimal behaviour (i.e. top/risky, bottom/safe,
something else) for each combination. Do the experimental results align with what you thought should
happen? If not, why?
(5 marks)
References and Generative AI
At the end of your report, you must cite any references (e.g. using IEEE or APA referencing style). If you
utilised Generative AI to assist in producing your code or report, briefly describe what tool you used and how
you used it, citing the version and date. e.g. “This work was corrected using Copilot (Microsoft, https:
//copilot.microsoft.com/) on 30 July 2024.” See the following link: https://guides.library.uq.
edu.au/referencing/chatgpt-and-generative-ai-tools, and read the Academic Misconduct section
for further details.
Page 10COMP3702 Assignment 2: BeeBot MDP
Academic Misconduct
The University defines Academic Misconduct as involving “a range of unethical behaviours that are designed
to give a student an unfair and unearned advantage over their peers.” UQ takes Academic Misconduct very
seriously and any suspected cases will be investigated through the University’s standard policy (https://
ppl.app.uq.edu.au/content/3.60.04-student-integrity-and-misconduct). If you are found guilty,
you may be expelled from the University with no award.
It is the responsibility of the student to ensure that you understand what constitutes Academic Misconduct
and to ensure that you do not break the rules. If you are unclear about what is required, please ask.
In the coding part of COMP3702 assignments, you are allowed to draw on publicly-accessible resources and
provided tutorial solutions, but you must make reference or attribution to its source, in comments next to the
referenced code, and include a list of references you have drawn on in your solution.py docstring.
If you have utilised Generative AI tools such as ChatGPT, you must clearly cite any use of generative AI in
each instance. To reference your use of AI see:
• https://guides.library.uq.edu.au/referencing/chatgpt-and-generative-ai-tools
Failure to reference use of generative AI tools constitutes student misconduct under the Student Code of
Conduct.
It is the responsibility of the student to take reasonable precautions to guard against unauthorised access
by others to his/her work, however stored in whatever format, both before and after assessment. You must
not show your code to, or share your code with, any other student under any circumstances. You must not
post your code to public discussion forums (including Ed Discussion) or save your code in publicly accessible
repositories (check your security settings). You must not look at or copy code from any other student.
All submitted files (code and report) will be subject to electronic plagiarism detection and misconduct proceedings
will be instituted against students where plagiarism or collusion is suspected. The electronic plagiarism
detection can detect similarities in code structure even if comments, variable names, formatting etc. are
modified. If you collude to develop your code or answer your report questions, you will be caught.
For more information, please consult the following University web pages:
• Information regarding Academic Integrity and Misconduct:
– https://my.uq.edu.au/information-and-services/manage-my-program/student-integrity-andconduct/academic-integrity-and-student-conduct

http://ppl.app.uq.edu.au/content/3.60.04-student-integrity-and-misconduct
• Information on Student Services:
– https://www.uq.edu.au/student-services/
Late submission
Students should not leave assignment preparation until the last minute and must plan their workloads to meet
advertised or notified deadlines. It is your responsibility to manage your time effectively.
It may take the autograder up to an hour to grade your submission. It is your responsibility to ensure you
are uploading your code early enough and often enough that you are able to resolve any issues that may be
revealed by the autograder before the deadline. Submitting non-functional code just before the deadline, and
not allowing enough time to update your code in response to autograder feedback is not considered a valid
reason to submit late without penalty.
Assessment submissions received after the due time (or any approved extended deadline) will be subject to a
late penalty of 10% per 24 hours of the maximum possible mark for the assessment item.
In the event of exceptional circumstances, you may submit a request for an extension. You can find guidelines
on acceptable reasons for an extension here https://my.uq.edu.au/information-and-services/manage-myprogram/exams-and-assessment/applying-extension,
and submit the UQ Application for Extension of Assessment
form.
Page 11

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:簡要分析htap數(shù)據(jù)庫和應用場景
  • 下一篇:INFS4203代做、Java/c++程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網(wǎng)頁版入口 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品国产三级国产a | 91精品国产综合久久久久久久| 久草精品在线观看| 亚洲无人区一区| 亚洲精品老司机| 国产精品乱码一区二区三区软件| 日韩欧美视频在线| 91精品国产91久久综合桃花 | 国产成人亚洲精品青草天美| 午夜精品久久久久久久久久| 一区二区三区在线播| 日韩一区欧美一区| 亚洲女与黑人做爰| 亚洲欧美日韩人成在线播放| 亚洲天堂精品视频| 亚洲精品福利视频网站| 国产精品久久看| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 一本色道久久综合亚洲aⅴ蜜桃| 国产麻豆精品久久一二三| 国产专区欧美精品| 国产夫妻精品视频| 99热99精品| 日本丶国产丶欧美色综合| 欧美自拍偷拍午夜视频| 欧美色手机在线观看| 7777精品伊人久久久大香线蕉 | 国产精品毛片大码女人| 日本一区二区免费在线观看视频 | 激情综合一区二区三区| 国产最新精品精品你懂的| zzijzzij亚洲日本少妇熟睡| 波波电影院一区二区三区| 色婷婷综合久久久久中文一区二区| 欧美日韩中文精品| 欧美一级欧美三级在线观看| 精品播放一区二区| 日韩一区在线播放| 视频一区二区三区入口| 国产美女在线观看一区| 99国产精品一区| 欧美色倩网站大全免费| 精品国产亚洲在线| 中文字幕制服丝袜一区二区三区| 亚洲精品国产高清久久伦理二区| 天天综合天天综合色| 国产九色sp调教91| 欧美优质美女网站| 精品国产乱码91久久久久久网站| 亚洲女性喷水在线观看一区| 日本中文字幕一区二区有限公司| 国产一区二区精品在线观看| 狠狠色丁香久久婷婷综| 91免费看视频| 欧美精品一区二区高清在线观看| 亚洲黄色免费网站| 国产成人免费在线视频| 欧美麻豆精品久久久久久| 久久婷婷久久一区二区三区| 亚洲国产一区二区三区青草影视| 狠狠狠色丁香婷婷综合激情| 欧美日韩一级黄| 亚洲视频一区二区在线| 国产精品一区二区男女羞羞无遮挡| 色婷婷亚洲精品| 国产日产亚洲精品系列| 欧美96一区二区免费视频| 欧美性视频一区二区三区| 国产亚洲成av人在线观看导航| 五月天网站亚洲| 在线免费观看日本欧美| 国产精品国产a| 国产揄拍国内精品对白| 91精品免费观看| 亚洲成人av福利| 色94色欧美sute亚洲13| 综合久久久久久| 成人听书哪个软件好| 久久久国产精品午夜一区ai换脸| 久色婷婷小香蕉久久| 51精品秘密在线观看| 亚洲一区在线播放| 在线观看免费视频综合| 国产精品不卡一区二区三区| 国产成人av一区二区| 久久蜜桃av一区精品变态类天堂| 麻豆精品国产传媒mv男同 | 午夜激情综合网| 欧美色综合久久| 亚洲蜜臀av乱码久久精品| 成人免费观看视频| 中文字幕人成不卡一区| 粉嫩13p一区二区三区| 国产拍揄自揄精品视频麻豆| 高清在线成人网| 中文字幕av一区二区三区免费看| 精品一二三四在线| 国产欧美一区二区在线观看| 国产成人夜色高潮福利影视| 国产亚洲一区字幕| 成a人片亚洲日本久久| 国产精品国模大尺度视频| 成人app网站| 亚洲午夜私人影院| 欧美一区二视频| 国产在线精品一区二区不卡了 | 日韩精品91亚洲二区在线观看| 在线观看免费一区| 亚洲午夜精品网| 久久综合九色综合97婷婷| 成人精品视频一区二区三区 | 欧美主播一区二区三区| 亚洲人成在线观看一区二区| 99久久精品99国产精品| 日韩极品在线观看| 久久综合中文字幕| 色综合视频在线观看| 日本视频中文字幕一区二区三区| 日韩欧美黄色影院| 成人丝袜18视频在线观看| 五月婷婷综合网| 久久午夜羞羞影院免费观看| 不卡影院免费观看| 蜜桃视频在线一区| 中文字幕在线播放不卡一区| 欧美精品18+| 不卡av在线网| 日韩精品乱码免费| 国产精品国产精品国产专区不片 | 欧美喷潮久久久xxxxx| 激情成人综合网| 伊人婷婷欧美激情| 国产精品污www在线观看| 欧美日本视频在线| 成人精品高清在线| 日韩av午夜在线观看| 亚洲品质自拍视频| 日韩欧美国产一区二区三区 | 欧美成人三级在线| 91色porny| 国产一区二区三区黄视频| 亚洲第一在线综合网站| 国产区在线观看成人精品| 欧美性猛片aaaaaaa做受| eeuss国产一区二区三区| 麻豆久久一区二区| 日韩中文字幕91| 亚洲伊人色欲综合网| 国产日本亚洲高清| 欧美不卡视频一区| 666欧美在线视频| 91麻豆123| 色悠悠久久综合| 国产成人精品免费网站| 奇米影视一区二区三区| 亚洲国产精品视频| 亚洲综合一二三区| 日韩美女视频一区二区| 中文字幕中文字幕在线一区| 日韩欧美中文一区| 亚洲国产精品久久人人爱| 最新久久zyz资源站| 久久久亚洲精品石原莉奈| 欧美日韩精品电影| 欧美日韩夫妻久久| 欧美性生活一区| 欧美性xxxxxxxx| 97精品国产露脸对白| 国产精品18久久久久| 国产精品影视网| 国产一区二区网址| 国产高清久久久| jvid福利写真一区二区三区| 国内精品第一页| 日本欧美一区二区三区乱码| 亚洲综合无码一区二区| 亚洲精品va在线观看| 亚洲成人在线网站| 午夜精品一区在线观看| 亚洲一级二级三级在线免费观看| 一区二区三区波多野结衣在线观看| 久久丝袜美腿综合| 国产日产欧美精品一区二区三区| 中文字幕亚洲在| 一区二区三区在线视频观看| 亚洲影视在线播放| 欧美aaa在线| 国产一区二区女| 91麻豆精品一区二区三区| 91国内精品野花午夜精品| 在线观看成人免费视频| 日韩欧美视频一区| 久久久久久久久岛国免费| 国产精品三级久久久久三级| 中文字幕一区二区三区蜜月| 综合亚洲深深色噜噜狠狠网站| 国产精品大尺度| 五月天激情综合| 国产精品一区二区三区网站| 成人免费精品视频|