99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CITS1401代寫、代做Python編程語言
CITS1401代寫、代做Python編程語言

時間:2024-09-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 1 of 9 
 
Department of Computer Science and Soffware Engineering 
The University of Western Australia 
CITS1401 
Computational Thinking with Python 
Project 1, Semester 2, 2024 
(Individual project) 
 
Submission deadline: 23:59 PM, 13 September 2024. 
Total Marks: 30 
 
Project Submission Guidelines: 
 
You should construct a Python 3 program containing your solution to the given problem and 
submit your program electronically on Moodle. The name of the file containing your code 
should be your student ID e.g. 12345678.py. No other method of submission is allowed. Please 
note that this is an individual project. 
• Your program will be automatically run on Moodle for sample test cases provided in 
the project sheet if you click the “check” link. However, this does not test all required 
criteria and your submission will be thoroughly tested manually for grading purposes 
after the due date. Remember you need to submit the program as a single file and copypaste
 the same program in the provided text box. 
• You have only one attempt to submit, so don’t submit until you are satisfied with your 
attempt. 
• All open submissions at the time of the deadline will be automatically submitted. There 
is no way in the system to open/modify/reverse your submission. 
• You must submit your project before the deadline listed above. Following UWA policy, 
a late penalty of 5% will be deducted for each day (or part day) i.e., 24 hours after the 
deadline, that the assignment is submitted. 
• No submissions will be allowed after 7 days following the deadline except approved 
special consideration cases. 
You are expected to have read and understood the University's guidelines on academic conduct. 
In accordance with this policy, you may discuss with other students the general principles 
required to understand this project, but the work you submit must be the result of your own 
effort. Plagiarism detection, and other systems for detecting potential malpractice, will CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 2 of 9 
 
therefore be used. Besides, if what you submit is not your own work then you will have learnt 
little and will therefore, likely, fail the final exam. 
 
Project Overview: 
 
In the rapidly expanding world of e-commerce, platforms like Amazon provide vast amounts 
of data that can offer valuable insights into various aspects of product performance. This project 
aims to analyze Amazon data for different products within specific categories, utilizing key 
parameters such as product ID, product name, category, discounted price, actual price, ratings, 
rating count etc., The data set includes a diverse range of categories, each with multiple 
products, allowing us to identify trends and patterns specific to each category. 
 
You are required to write a Python 3 program that will read two different files: a CSV file and 
a TXT file. Your program will perform four different tasks outlined below. While the CSV file 
is required to solve all the tasks (Tasks**4), the TXT file is only required for the last task (Task 
4). 
After reading the CSV file, your program is required to complete the following: 
• Task 1: Identify Extreme Discount Prices 
Find the product ID with the highest discounted price and the product ID with the 
lowest discounted price for a specific category. 
• Task 2: Summarize Price Distribution 
Provide a summary of the ‘actual price’ distribution i.e., mean, median and mean 
absolute deviation of products for a specific category, considering only the products 
with a rating count higher than 1000. 
• Task 3: Calculate Standard Deviation of Discounted Percentages 
Calculate the standard deviation of the discounted percentages for products with rating 
in the range 3.3≤rating≤4.3, for each category. 
• Task 4: Correlate Sales Data 
Find the correlations between the sales of the products identified in Task 1 (products 
with highest and lowest discounted prices for a specific category). 
Steps: 
o Read the TXT file which contains the sales data for several years, such as 1998-
2021. Each line lists product IDs and the units sold for that year. If a product ID 
is not mentioned in a line, it means zero units sold for that year. CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 3 of 9 
 
o Create two lists, one for the sales of the product with the highest discounted 
price and another for the sales of the product with the lowest discounted price 
identified in Task 1. 
o Process each line of the TXT file to determine the number of units sold each 
year. 
o Each list should have one entry per year, with the total number of entries 
matching the number of lines in the TXT file. 
Finally, calculate the correlation coefficient between the two sales lists. 
 
Requirements: 
 
1) You are not allowed to import any external or internal module in python. While use of 
many of these modules, e.g., csv or math is a perfectly sensible thing to do in production 
setting, it takes away much of the point of different aspects of the project, which is about getting 
practice opening text files, processing text file data, and use of basic Python structures, in this 
case lists and loops. 
2) Ensure your program does NOT call the input() function at any time. Calling the 
input() function will cause your program to hang, waiting for input that automated testing 
system will not provide (in fact, what will happen is that if the marking program detects the 
call(s), it will not test your code at all which may result in zero grade). 
3) Your program should also not call print()function at any time except for the case of 
graceful termination (if needed). If your program encounters an error state and exits gracefully, 
it should return a correlation/standard deviation/mean/median value of zero and print an 
appropriate error message. At no point should you print the program’s outputs or provide a 
printout of the program’s progress in calculating such outputs. Outputs should be returned by 
the program instead. 
4) Do not assume that the input file names will end in .csv or .txt. File name suffixes such 
as .csv and .txt are not mandatory in systems other than Microsoft Windows. Do not 
enforce within your program that the file must end with a specific extension, nor should you 
attempt to add an extension to the provided file name. Doing so can result in loss of marks. 
 
 
 
 CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 4 of 9 
 
Input: 
 
Your program must define the function main with the following syntax: 
def main(CSVfile, TXTfile, category): 
The input arguments for this function are: 
1. CSVfile: The name of the CSV file (as string) containing the record of the Amazon’s 
product data. 
2. TXTfile: The name of the TXT file (as string) containing the record of Amazon’s 
product sales. 
3. category: A string representing the category to be analysed. The Amazon’s product 
data contains multiple categories. 
Output: 
 
The following four outputs are expected: 
i) OP1= [Product ID1, Product ID2]: A list that contains two items, ID of 
the product with the highest discounted price, ID of the product with the lowest 
discounted price. Your output should be stored in a list in the following order: 
[highest discounted price product ID, lowest discounted price product ID] 
For example: ['b07vtfn6hm', 'b08y5kxr6z'] 
Note: If multiple products have the same highest discounted price, select the product 
ID that comes first when the product IDs are sorted in ascending order. Apply the same 
rule for the lowest discounted price. 
 
ii) OP2= [mean, median, mean absolute deviation]: A list containing 
three statistical measures i.e., mean, median, and mean absolute deviation of the actual 
price for products within a given category, considering only those products with a 
rating count higher than 1000. The output should be stored in a list in the following 
order: 
[mean, median, mean absolute deviation] 
For example: [2018.8, 800.0, 21**.48] 
 
 
 CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 5 of 9 
 
iii) OP3= [STD1, STD2, ..., STDN]: A list containing the standard deviation of 
the discounted percentages for products within the rating in the range 3.3 to 4.3 (3.3 ≤ 
rating ≤ 4.3) of each category. The output should be sorted in the descending order. The 
expected output is a list with values sorted in the descending order. 
For example: [0.297, 0.2654, 0.2311, 0.198, 0.1701, 0.1596, 
0.0071] 
 
iv) OP4= Correlation: A numeric value representing the correlation between the 
sales of a product with the highest discounted price and the lowest discounted price 
found in the task 1 above. The expected output is a single float value. 
For example: -0.02** 
 
All returned numeric outputs (both in lists and individual) must contain values rounded to four 
decimal places (if required to be rounded off). Do not round the values during calculations. 
Instead, round them only at the time when you save them into the final output variables. 
 
Examples: 
Download Amazon_products.csv and Amazon_sales.txt from the folder of Project 
1 on LMS or Moodle. An example of how you can call your program from the Python shell 
(and examine the results it returns) is provided below: 
 
>>>OP1, OP2, OP3, OP4= main('Amazon_products.csv', 
'Amazon_sales.txt', 'Computers&Accessories') 
 
>>>OP1 
['b07vtfn6hm', 'b08y5kxr6z'] 
 
>>> OP2 
[2018.8, 800.0, 21**.48] 
 
>>> OP3 
[0.297, 0.2654, 0.2311, 0.198, 0.1701, 0.1596, 0.0071] 
 
>>> OP4 
-0.02** 
 
 
 CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 6 of 9 
 
Assumptions: 
Your program can assume the following: 
1. Anything that is meant to be string (e.g., header) will be a string, and anything that is 
meant to be numeric will be numeric. 
2. All string data in the CSV file and TXT file is case-insensitive, which means 
“Computers&accessories” is same as “Computers&Accessories” or “B08Y5KXR6Z” is 
same as “b08y5kxr6z”. Your program needs to handle the situation to consider both 
strings to be the same. 
3. In the CSV file, the order of columns in each row will follow the order of the headings 
provided in the first row. However, rows can be in random order except the first row 
which contains the headings. 
4. No data will be missing in the CSV file; however, values can be zero and must be 
accounted for when calculating averages and standard deviations. 
[In case any part of the calculation cannot be performed due to zero values or other 
boundary conditions, do a graceful termination by printing an error message and 
returning a zero value (for numbers), None for (string) or empty list depending on the 
expected outcome. Your program must not crash.] 
5. Each line in the TXT file will correspond to a unique year, with no repetition of years. 
The number of years may vary, so avoid hard coding. 
6. All the product IDs in the CSV file will be unique. 
7. The main() will always be provided with valid input parameters. 
8. The necessary formulas are provided at the end of this document. 
 
Important grading instruction: 
 
Note that you have not been asked to write specific functions. The task has been left to you. 
However, it is essential that your program defines the top-level function main(CSVfile, 
TXTfile, category) (commonly referred to as ‘main()’ in the project documents to 
save space when writing it. Note that when main() is written it still implies that it is defined 
with its three input arguments). The idea is that within main(), the program calls the other 
functions. (Of course, these functions may then call further functions.) This is important 
because when your code is tested on Moodle, the testing program will call your main() 
function. So, if you fail to define main(), the testing program will not be able to test your CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 7 of 9 
 
code and your submission will be graded zero. Don’t forget the submission guidelines provided 
at the start of this document. 
 
Marking rubric: 
 
Your program will be marked out of 30 (later scaled to be out of 15% of the final mark). 
24 out of 30 marks will be awarded automatically based on how well your program completes 
a number of tests, reflecting normal use of the program, and how the program handles various 
states including, but not limited to, different numbers of rows in the input file and / or any error 
states. You need to think creatively what your program may face. Your submission will be 
graded by data files other than the provided data file. Therefore, you need to be creative to 
investigate corner or worst cases. I have provided few guidelines from ACS Accreditation 
manual at the end of the project sheet which will help you to understand the expectations. 
 
6 out of 30 marks will be awarded on style (3/6) “the code is clear to read” and efficiency (3/6) 
“your program is well constructed and run efficiently”. For style, think about use of comments, 
sensible variable names, your name at the top of the program, student ID, etc. (Please watch 
the lectures where this is discussed). 
 
Style Rubric: 

 
 Gibberish, impossible to understand 
1 Style is really poor or fair. 
 2 
 
 Style is good or very good, with small lapses. 
 3 Excellent style, really easy to read and follow 
 
Your program will be traversing text files of various sizes (possibly including large csv files) 
so you need to minimise the number of times your program looks at the same data items. 
Efficiency rubric: 
0 Code too complicated to judge efficiency or wrong problem tackled 
1 Very poor efficiency, additional loops, inappropriate use of readline() 
2 Acceptable or good efficiency with some lapses 
3 Excellent efficiency, should have no problem on large files, etc. 
 
Automated testing is being used so that all submitted programs are being tested the same way. 
Sometimes it happens that there is one mistake in the program that means that no tests are 
passed. If the marker can spot the cause and fix it readily, then they are allowed to do that and 
your - now fixed - program will score whatever it scores from the tests, minus 4 marks, because CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 8 of 9 
 
other students will not have had the benefit of marker intervention. Still, that's way better than 
getting zero. On the other hand, if the bug is hard to fix, the marker needs to move on to other 
submissions. 
Extract from Australian Computing Society Accreditation manual 2019: 
As per Seoul Accord section D, a complex computing problem will normally have some or 
all the following criteria: 
 
- involves wide-ranging or conflicting technical, computing, and other issues. 
- has no obvious solution and requires conceptual thinking and innovative analysis to 
formulate suitable abstract models. 
- a solution requires the use of in-depth computing or domain knowledge and an 
analytical approach that is based on well-founded principles. 
- involves infrequently encountered issues. 
- are outside problems encompassed by standards and standard practice for professional 
computing. 
- involves diverse groups of stakeholders with widely varying needs. 
- has significant consequences in a range of contexts. 
- is a high-level problem possibly including many component parts or sub-problems. 
- identification of a requirement or the cause of a problem is ill defined or unknown. 
 
Necessary formulas: 
i) Median 
 
Mathematically, median is represented as: 
X = ordered list of values in the data set. 
n = number of values in the data set. 
 
ii) Mean absolute Deviation 
 
MD = average value of X 
n = number of data values 
xi = data values in X 
 
 CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 9 of 9 
 
iii) Standard deviation: 
 
Mathematically, standard deviation is represented as: 𝑖𝑖=1
Ү**;Ү**; − 1 
 
where are observed value in sample data. w**9;w**9;**; is the mean value of observations 
and      is the number of sample observations. 
 
iv) Correlation coefficient: 
 
Mathematical formula to calculate correlation is as follows: 
where          and          are the values of sales in each year (mentioned in the sales.txt file) for the 
product with the highest and the lowest discounted price respectively. w**9;w**9;**; is the mean of sales of 
product with the highest discounted price and 𝑦𝑦  is the mean of the sales of the product with the 
lowest discounted price. 
 
 
Note: Any updates regarding the project will be posted on Moodle help forum. 
 
 請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:CMP5321代做、代寫Python程序語言
  • 下一篇:代寫CDS540程序、代做Python/Java編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产在线一区二区| 精品一二三四区| 欧美人与性动xxxx| 99精品在线观看视频| 国产在线看一区| 亚洲国产综合在线| 亚洲成a人片在线不卡一二三区| 一区二区在线免费观看| 国产精品九色蝌蚪自拍| 国产精品久久久久一区二区三区共 | av福利精品导航| 99久久精品国产一区二区三区| 成人av网站在线| 99久久婷婷国产| 在线免费观看日本欧美| 国产麻豆欧美日韩一区| 日本精品一级二级| 91麻豆视频网站| 成人午夜av在线| av电影一区二区| 99这里只有久久精品视频| 波多野结衣中文字幕一区二区三区 | 日韩免费观看2025年上映的电影| 欧美一级夜夜爽| 久久嫩草精品久久久久| 国产精品入口麻豆九色| 亚洲精品欧美激情| 日韩高清在线不卡| 国产经典欧美精品| 色综合久久天天综合网| 亚洲综合激情网| 中文字幕一区av| 欧美无人高清视频在线观看| 久久久午夜精品理论片中文字幕| 精品美女在线观看| 亚洲欧洲三级电影| 丝袜脚交一区二区| 懂色一区二区三区免费观看| 欧美伊人久久久久久久久影院| 欧美一区二区人人喊爽| 国产精品久久久爽爽爽麻豆色哟哟| 一区二区三区四区亚洲| 精品一二线国产| 欧美三区在线观看| 国产欧美一区二区三区在线看蜜臀 | 国产福利精品一区二区| 欧美精选一区二区| 不卡影院免费观看| 欧美欧美欧美欧美| 国产做a爰片久久毛片 | 色婷婷精品久久二区二区蜜臂av | 国产精品一区一区三区| 欧美亚洲国产一区在线观看网站 | 91在线视频网址| 欧美一区二区三区小说| 国产精品视频免费| 美女免费视频一区| 欧美三级中文字幕在线观看| 国产精品免费人成网站| 久久99国产精品尤物| 欧美撒尿777hd撒尿| 亚洲欧美日韩中文字幕一区二区三区| 免费成人美女在线观看| 在线观看亚洲专区| 自拍视频在线观看一区二区| 国产精品91xxx| 欧美不卡在线视频| 日韩成人一区二区| 欧美日韩卡一卡二| 亚洲午夜久久久| 欧美中文一区二区三区| 伊人性伊人情综合网| 91免费视频大全| 自拍偷拍国产亚洲| 91一区二区在线| 亚洲视频香蕉人妖| 99re热视频精品| 18欧美乱大交hd1984| 成人av手机在线观看| 国产欧美日韩麻豆91| 国产精品亚洲一区二区三区在线 | 国产午夜亚洲精品羞羞网站| 精品一区免费av| 欧美精品一区二区不卡| 国产自产视频一区二区三区| 久久婷婷综合激情| 国产成人综合在线播放| 久久久影视传媒| 国产成人亚洲综合色影视| 欧美国产一区二区在线观看 | 久久国产三级精品| 亚洲精品在线观看视频| 黄一区二区三区| 中文字幕va一区二区三区| 99久久久精品| 天天影视涩香欲综合网| 91精品国产全国免费观看| 久久成人av少妇免费| 国产欧美视频在线观看| 色婷婷久久久亚洲一区二区三区| 亚洲人成人一区二区在线观看| 亚洲黄色录像片| 精品一区二区av| 一区二区三区在线观看网站| 一区二区三区四区亚洲| 国产一区二区调教| 欧美日韩免费电影| 亚洲精品一区二区三区99| 久久久久久夜精品精品免费| 亚洲天堂成人在线观看| 国精品**一区二区三区在线蜜桃| 99视频一区二区| 欧美激情在线一区二区三区| 久久不见久久见免费视频7| 欧美日韩国产a| 亚洲福利一区二区三区| 欧美午夜精品一区二区三区| 亚洲影院久久精品| 91亚洲精品一区二区乱码| 国产欧美日本一区二区三区| 国产美女av一区二区三区| 久久精品男人天堂av| 国产一区二区不卡| 精品日韩一区二区三区| 国产一区欧美二区| 亚洲激情图片qvod| 在线播放中文字幕一区| 激情综合网激情| 国产精品久久久久婷婷| 91老师国产黑色丝袜在线| 亚洲bt欧美bt精品| 国产欧美日韩三区| 欧美图区在线视频| 激情丁香综合五月| 亚洲另类春色国产| 26uuu久久天堂性欧美| 成人av电影观看| 久久99精品久久久| 一区二区在线观看视频| 久久综合网色—综合色88| 色老汉一区二区三区| 福利91精品一区二区三区| 亚洲视频1区2区| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 欧美日韩亚州综合| 免费高清在线一区| 一片黄亚洲嫩模| 亚洲人成7777| 夜夜亚洲天天久久| 久久综合九色综合97婷婷女人 | 亚洲一区二区五区| 亚洲激情综合网| 亚洲黄色小视频| 一区二区三区四区精品在线视频| 国产婷婷色一区二区三区在线| 精品国内片67194| 久久综合五月天婷婷伊人| 成人性视频免费网站| 精品一区二区在线播放| 国产在线精品视频| caoporn国产一区二区| 成人免费视频国产在线观看| 成人精品国产福利| 精品视频一区二区不卡| 日韩一卡二卡三卡国产欧美| 精品成a人在线观看| 亚洲欧洲日韩在线| 天天色 色综合| 国产精品正在播放| 日本韩国欧美一区二区三区| 欧美伦理影视网| 日本一区二区动态图| 亚洲福利一区二区| 国产精品一区二区无线| 色哟哟日韩精品| 日韩免费性生活视频播放| 国产精品国产三级国产aⅴ中文| 18成人在线观看| 激情深爱一区二区| 在线免费亚洲电影| 国产精品丝袜91| 免费一级片91| 欧美最猛黑人xxxxx猛交| 精品日韩欧美一区二区| 亚洲成人动漫在线免费观看| 99久久婷婷国产综合精品| 精品剧情在线观看| 五月婷婷久久综合| 日本韩国欧美一区| 中文字幕一区二区三区蜜月| 亚洲成a人片在线观看中文| 91玉足脚交白嫩脚丫在线播放| 久久一夜天堂av一区二区三区| 亚洲免费在线看| 欧美午夜电影一区| 午夜精彩视频在线观看不卡| 欧美性受xxxx| 日韩av成人高清| 欧美一区二区视频观看视频| 香港成人在线视频|