99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫(xiě)3007_7059 Artificial Intelligence 3007_7059
代寫(xiě)3007_7059 Artificial Intelligence 3007_7059

時(shí)間:2024-09-08  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


Assignment 2: Artificial Intelligence (3007_7059 Combined)

Assignment 2

The dataset is available here

(https://myuni.adelaide.edu.au/courses/95211/files/14537288/download)

Part 1 Wine Quality Prediction with 1NN (K-d Tree)

Wine experts evaluate the quality of wine based on sensory data. We could also collect the features of wine from objective tests, thus the objective features could be used to predict the expert’s judgment, which is the quality rating of the wine. This could be formed as a supervised learning problem with the objective features as the data features and wine quality rating as the data labels.

In this assignment, we provide objective features obtained from physicochemical statistics for each white wine sample and its corresponding rating provided by wine experts. You are expected to implement the k-d tree (KDT) and use the training set to train your k-d tree, then provide wine quality prediction on the test set by searching the tree

Wine quality rating is measured in the range of 0-9. In our dataset, we only keep the samples for quality ratings 5, 6 and 7. The 11 objective features are listed as follows [1]:

f_acid : fixed acidity

v_acid : volatile acidity

c_acid : citric acid

res_sugar : residual sugar

chlorides : chlorides

fs_dioxide : free sulfur dioxide

ts_dioxide : total sulfur dioxide

density : density

pH : pH

sulphates : sulphates

alcohol : alcohol

Explanation of the Data.

train: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

 

sulphates

alcohol

quality

8.10

0.270

0.41

1.45

0.033

11.0

63.0

0.9**80

2.99

0.56

12.0

5

8.60

0.230

0.40

4.20

0.035

17.0

109.0

0.99**0

3.14

0.53

9.7

5

7.**

0.180

0.74

1.20

0.040

16.0

75.0

0.99200

3.18

0.63

10.8

5

8.30

0.420

0.62

19.25

0.040

41.0

172.0

1.00020

2.98

0.67

9.7

5

6.50

0.310

0.14

7.50

0.044

34.0

133.0

0.99550

3.22

0.50

9.5

5

test: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

pH

sulphates

alcohol

7.0

0.360

0.14

11.60

0.043

35.0

228.0

0.99770

3.13

0.51

8.**0000

6.3

0.270

0.18

7.70

0.048

45.0

186.0

0.99620

3.23

0.**

9.000000

7.2

0.2**

0.20

7.70

0.046

51.0

174.0

0.99582

3.16

0.52

9.500000

7.1

0.140

0.35

1.40

0.039

24.0

128.0

0.99212

2.97

0.68

10.400000

7.6

0.480

0.28

10.40

0.049

57.0

205.0

0.99748

3.24

0.45

9.300000

1.1 1NN (K-d Tree)

From the given training data, our goal is to learn a function that can predict the wine quality rating of a wine sample, based on the objective features. In this assignment, the predictor function will be constructed as a k-d tree. Since the attributes (objective features) are continuously valued, you shall apply the k-d tree algorithm for continuous data, as outlined in Algorithms 1. It is the same as taught in the lecture. Once the tree is constructed, you will search the tree to find the **nearest neighbour of a query point and label the query point. Please refer to the search logic taught in the lecture to write your code for the 1NN search.

 

Algorithm 1 BuildKdTree(P, D) Require: A set of points P of M dimensions and current depth D. 1: if P is empty then 2: return null 3: else if P only has one data point then 4: Create new node node 5: node.d ← d 6: node.val ← val 7: node.point ← current point 8: return node 9: else 10: d ← D mod M 11: val ← Median value along dimension among points in P. 12: Create new node node. 13: node.d ← d 14: node.val ← val 15: node.point ← point at the median along dimension d 16: node.left ← BuildKdTree(points in P for which value at dimension d is less than or equal to val, D+1) 17: node.right ← BuildKdTree(points in P for which value at dimension d is greater than val, D+ 1) 18: return node 19: end if

Note: Sorting is not necessary in some cases depending on your implementation. Please figure out whether your code needs to sort the number first. Also, if you compute the median by yourself, when there’s an even number of points, say [1,2,3,4], the median is 2.5.

 

1.2 Deliverable

Write your k-d tree program in Python 3.6.9 in a file called nn_kdtree.py. Your program must be able to run as follows:

$ python nn_kdtree.py [train] [test] [dimension]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[dimension] is used to decide which dimension to start the comparison. (Algorithm 1)

Given the inputs, your program must construct a k-d tree (following the prescribed algorithms) using the training data, then predict the quality rating of each of the wine samples in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

1.3 Python Libraries

You are allowed to use the Python standard library to write your k-d tree learning program (see https://docs.python.org/3/library/(https://docs.python.org/3/library/) for the components that make up the Python v3.6.9 standard library). In addition to the standard library, you are allowed to use NumPy and Pandas. Note that the marking program will not be able to run your program to completion if other third-party libraries are used. You are NOT allowed to use implemented tree structures from any Python package, otherwise the mark will be set to 0.

1.4 Submission

You must submit your program files on Gradescope. Please use the course code NPD6JD to enroll in the course. Instructions on accessing Gradescope and submitting assignments are provided at https://help.gradescope.com/article/5d3ifaeqi4-student-canvas (https://help.gradescope.com/article/5d3ifaeqi4-student-canvas) .

For undergraduates, please submit your k-d tree program (nn_kdtree.py) to Assignment 2 - UG.

1.5 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

 

1.6 Debugging Suggestions

Step-by-step debugging by checking intermediate values/results will help you to identify the problems of your code. This function is enabled by most of the Python IDE. If not in your case, you could also print the intermediate values out. You could use sample data or create data in the same format for debugging

1.7 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 15% (undergrads) or 12% (postgrads) of the overall course mark. For undergraduates, bonus marks of 3% will be awarded if Section 2 is completed correctly.

There will be no further manual inspection/grading of your program to award marks based on coding style, commenting, or “amount” of code written.

1.8 Using other source code

You may not use other source code for this assignment. All submitted code must be your own work written from scratch. Only by writing the solution yourself will you fully understand the concept.

1.9 Due date and late submission policy

This assignment is due by 11:59 pm Friday 3 May 2024. If your submission is late, the maximum mark you can obtain will be reduced by 25% per day (or part thereof) past the due date or any extension you are granted.

Part 2 Wine Quality Prediction with Random Forest

For postgraduate students, completing this section will give you the remaining 3% of the assignment marks. In this task, you will extend your knowledge learned from k-d tree to k-d forest. The process for a simplified k-d forest given N input-output pairs is:

1. Randomly select a set of N' distinct samples (i.e., no duplicates) where N' = N' * 80% (round to integer). This dataset is used for constructing a k-d tree (i.e., the root node of the k-d tree)

 

2. Build a k-d tree on the dataset from (1) and apply Algorithm 1.

3. Repeat (1) and (2) until reaching the maximum number of trees.

This process is also shown in Algorithm 2. In k-d forest learning, a sample set is used to construct a k-d tree. That is to say, different trees in the forest could have different root data. For prediction, the k-d forest will choose the most voted label as its prediction. For the wine quality prediction task, you shall apply Algorithm 2 for k-d forest learning and apply Algorithm 3 to predict the wine quality for a new wine sample. To generate samples, please use the following (incomplete) code to generate the same samples as our testing scripts:

import random ... N= ... N’=... index_list = [i for i in range(0, N)] # create a list of indexes for all data sample_indexes = [] for j in range(0,n_tree): random.seed(rand_seed+j) # random_seed is one of the input parameters subsample_idx = random.sample(index_list, k=N’) # create unique N’ indices sample_indexes = sample_indexes + subsample_id Algorithm 2 KdForest(data, d_list, rand_seed) Require:data in the form. of N input-output pairs ,d_list a list of depth 1: forest ← [] 2: n_trees ← len(d_list) 3: sample_indexes ← N'*n_trees integers with value in [0,N) generated by using above method 4: count ← 0 5: for count < n_trees do 6: sampled_data ← N' data pairs selected by N' indexes from sample_indexes sequentially 7: n = BuildKdTree(sampled_data, d_list[count]) ⇒ Algorithm 1 8: forest.append(n)

 

9: end for 10: return forest Algorithm 3 Predict_KdForest(forest, data) Require: forest is a list of tree roots, data in the form. of attribute values x. 1: labels ← [] 2: for Each tree n in the forest do 3: label ← 1NN search on tree n 4: labels.append(n) 5: end for 6: return the most voted label in labels

2.1 Deliverables

Write your random forest program in Python 3.6.9 in a file called nn_kdforest.py. Your program must be able to run as follows

$ python nn_kdforest.py [train] [test] [random_seed] [d_list]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[random_seed] is the seed value generate random values.

[d_list] is a list of depth values (in Algorithm 2 n_trees==len(d_list))

Given the inputs, your program must learn a random forest (following the prescribed algorithms) using the training data, then predict the quality rating of each wine sample in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

Submit your program in the same way as the submission for Sec. 1. For postgraduates, please submit your learning programs (nn_kdtree.py and nn_kdforest.py) to Assignment 2 - PG. The due date, late submission policy, and code reuse policy are also the same as in Sec 1.

 

2.2 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

2.3 Debugging Suggestions

In addition to Sec. 1.6, another value worth checking when debugging is (but not limited to): the sample_indexes – by setting a random seed, the indexes should be the same each time you run the code

2.4 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 3% of the overall course mark.

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:代寫(xiě)FINC5090、代做Python語(yǔ)言編程
  • 下一篇:MGMT20005代寫(xiě)、c/c++,Python程序代做
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美精品一区二区三区视频| 久久综合狠狠综合| 久久er99热精品一区二区| 高清成人在线观看| 欧美成人a∨高清免费观看| 亚洲免费观看高清完整版在线观看| 亚洲一区二区中文在线| 欧美日本一区二区在线观看| 91小视频免费看| 亚洲综合一二区| 91精品国产综合久久久久| 六月丁香综合在线视频| 欧美激情一区二区三区| 色婷婷久久久综合中文字幕| 亚洲狠狠爱一区二区三区| 69堂精品视频| 91麻豆精品在线观看| 青青青伊人色综合久久| 欧美xfplay| 欧美一卡2卡3卡4卡| 成人黄页毛片网站| 精品一区二区三区av| 亚洲成人av中文| 国产精品久久久一本精品 | 日韩视频免费观看高清在线视频| 婷婷久久综合九色综合伊人色| 一本大道av伊人久久综合| 欧美日韩中字一区| 毛片av一区二区| 日韩三级伦理片妻子的秘密按摩| 亚洲综合一区二区| 国产精品久久99| 日韩一区二区三区视频在线| 蜜臀va亚洲va欧美va天堂| 中文字幕亚洲在| 91麻豆精品国产自产在线观看一区 | 精品一区二区免费| 亚洲免费在线播放| 欧美一区二区三区公司| 色综合久久久久网| 97国产一区二区| 成人涩涩免费视频| 国产精品一区二区在线观看不卡 | 亚洲成人免费影院| 欧美三级欧美一级| 国产一区二区在线看| 亚洲午夜av在线| 欧美国产乱子伦 | 国产午夜精品福利| 日韩二区在线观看| 一区免费观看视频| 中文字幕第一区综合| 精品久久一区二区三区| 欧美日韩一区三区四区| 欧洲色大大久久| 91精品在线免费观看| 在线不卡中文字幕| 久久这里只精品最新地址| 久久精品亚洲一区二区三区浴池| 久久在线免费观看| 国产欧美日韩综合| ...xxx性欧美| 视频一区视频二区中文字幕| 国产一区二区三区四区五区入口 | 国产精品不卡在线| 亚洲女与黑人做爰| 秋霞影院一区二区| 91色.com| 中文字幕电影一区| 天天综合色天天| 久久99精品久久久久久国产越南 | 日本韩国精品一区二区在线观看| 色婷婷精品大在线视频| 精品国产sm最大网站免费看| 亚洲一区二区三区四区在线观看| 天堂资源在线中文精品| 色综合久久久久综合体| 91浏览器在线视频| 国产人妖乱国产精品人妖| 一区二区三区不卡视频在线观看| 麻豆视频一区二区| 欧美精品在线一区二区三区| 久久久久国产成人精品亚洲午夜| 亚洲精品福利视频网站| 成人中文字幕电影| 91精品国产免费| 视频一区免费在线观看| 在线精品国精品国产尤物884a| 欧美激情一区二区在线| 亚洲一区二区三区三| 色综合网站在线| 中文字幕字幕中文在线中不卡视频| 亚洲欧美另类小说| 在线影院国内精品| 久久久精品黄色| 久久国产人妖系列| 久久毛片高清国产| 成人av高清在线| 亚洲123区在线观看| 欧美丰满美乳xxx高潮www| 麻豆国产精品官网| 欧美国产精品v| 91免费版在线看| 日韩精品欧美成人高清一区二区| 欧美xxxx在线观看| 国产不卡视频在线播放| 亚洲高清一区二区三区| 亚洲精品一区二区三区在线观看| 国产高清在线精品| 亚洲一区自拍偷拍| 中文字幕中文字幕一区二区| 91黄色免费看| a在线播放不卡| 久久99九九99精品| 亚洲二区视频在线| 亚洲精品中文在线影院| 久久久久久久综合日本| 欧美日本一区二区三区| 成人av网站免费| 成人综合婷婷国产精品久久蜜臀| 日韩综合小视频| 午夜一区二区三区视频| 亚洲午夜久久久久久久久电影网| 久久亚洲一区二区三区明星换脸| 欧美午夜在线一二页| 在线播放国产精品二区一二区四区| 国产一区二区电影| 久久国产精品第一页| 美腿丝袜在线亚洲一区| 最新久久zyz资源站| 亚洲成人动漫在线观看| 午夜精品久久久| 日日夜夜免费精品视频| 亚洲成av人片一区二区| 看电影不卡的网站| 国产在线国偷精品产拍免费yy| 激情综合色播激情啊| 不卡的电影网站| 欧美午夜精品免费| 精品国产乱码久久久久久浪潮| 欧美成人一区二区三区| 中文字幕字幕中文在线中不卡视频| 亚洲国产wwwccc36天堂| 久久精品理论片| 欧美在线观看一区二区| 欧美巨大另类极品videosbest| 久久久一区二区| 亚洲综合色区另类av| 国产成人午夜视频| 欧美午夜免费电影| 久久综合精品国产一区二区三区| 国产精品国产三级国产aⅴ入口 | 亚洲欧美偷拍三级| 日本伊人色综合网| 欧洲国内综合视频| 亚洲视频在线一区观看| 成人激情免费电影网址| 精品免费日韩av| 国产制服丝袜一区| 欧美精品一区二区高清在线观看 | 成人黄色av网站在线| 日韩视频在线你懂得| 五月天激情综合| 日韩视频一区二区在线观看| 亚洲超碰精品一区二区| 欧洲在线/亚洲| 欧美一区二区成人6969| 奇米影视一区二区三区| 一本大道久久a久久综合| 日韩视频一区二区三区在线播放| 亚洲高清免费在线| 精品免费视频一区二区| 国产成人亚洲综合a∨婷婷图片| 精品视频1区2区| 国产成人在线免费观看| 亚洲精品综合在线| 精品国产髙清在线看国产毛片| 麻豆91免费观看| 日本一区二区动态图| 91捆绑美女网站| 国产宾馆实践打屁股91| 26uuu另类欧美| 日本高清不卡视频| 蜜臀久久久99精品久久久久久| 久久综合色8888| 日本韩国欧美一区| 国产一区二区在线影院| 一区二区成人在线观看| 欧美人体做爰大胆视频| 99精品在线免费| 蜜臀av亚洲一区中文字幕| 国产精品国产三级国产普通话三级| 欧美日韩成人综合在线一区二区| 国产精品亚洲第一| 青青草视频一区| 天天做天天摸天天爽国产一区| 欧美国产精品一区二区三区| 精品国产91洋老外米糕| 欧美日韩精品综合在线| 91麻豆.com|