99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CSCI 4210 — Operating Systems

時間:2024-08-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSCI 4210  Operating Systems

Simulation Project Part II (document version 1.0)

Processes and CPU Scheduling

Overview

•  This assignment is due in Submitty by 11:59PM EST on Thursday, August 15, 2024

•  This project is to be completed either individually or in a team of at most three students; as with Project Part I, form your team within the Submitty gradeable, but do not submit any code until we announce that auto-grading is available

•  NEW: If you worked on a team for PartI, feel free to change your team for Part II; all code is reusable from Part I even if you change teams

•  Beyond your team (or yourself if working alone), do not share your code; however, feel free to discuss the project content and your findings with one another on our Discussion Forum

•  To appease Submitty, you must use one of the following programming languages:  C, C++, or Python (be sure you choose only one language for your entire implementation)

• You will have ve penalty-free submissions on Submitty, after which points will slowly be deducted, e.g., -1 on submission #6, etc.

• You can use at most three late days on this assignment; in such cases, each team member must use a late day

• You will have at least three days before the due date to submit your code to Submitty; if the auto-grading is not available three days before the due date, the due date will be 11:59PM EDT three days after auto-grading becomes available

•  NEW: Given that your simulation results might not entirely match the expected output on Submitty, we will cap your auto-graded grade at 50  points even though there will be more than 50 auto-graded points per language available in Submitty

• All submitted code must successfully compile and run on Submitty, which currently uses Ubuntu v22.04.4 LTS

• If you use C or C++, your program must successfully compile via gcc org++ with no warning messages when the -Wall  (i.e., warn all) compiler option is used; we will also use -Werror, which will treat all warnings as critical errors; the -lm flag will also be included; the gcc/g++ compiler is currently version 11.4.0 (Ubuntu  11.4.0-1ubuntu1~22.04)

•  For source file naming conventions, be sure to use * .c for C and * .cpp for C++; in either case, you can also include * .h files

• For Python, you must use python3, which is currently Python 3.10.12; be sure to name your main Python file project .py; also be sure no warning messages or extraneous output occur during interpretation

•  Please “flatten” all directory structures to a single directory of source files

•  Note that you can use square brackets in your code

Project specifications

For Part II of our simulation project, given the set of processes pseudo-randomly generated in Part I, you will implement a series of simulations of a running operating system. The overall focus will again be on processes, assumed to be resident in memory, waiting to use the CPU. Memory and the I/O subsystem will not be covered in depth in either part of this project.

Conceptual design  (from Part I)

process is defined as a program in execution.  For this assignment, processes are in one of the following three states, corresponding to the picture shown further below.

•  RUNNING: actively using the CPU and executing instructions

•  READY: ready to use the CPU, i.e., ready to execute a CPU burst

• WAITING: blocked on I/O or some other event

RUNNING                      READY                                   WAITING  (on  I/O) STATE                     STATE                                     STATE

+-----+                                                             +---------------------+

|           |          +-------------------+          |                                          |

|  CPU   |   <==  |         |         |         |         |              |         I/O  Subsystem          |

|           |          +-------------------+          |                                          |

+-----+           <<<  queue  <<<<<<<<<           +---------------------+

Processes in the READY  state reside in a queue called the ready queue.  This queue is ordered based on a configurable CPU scheduling algorithm.  You will implement specific CPU scheduling algorithms in Part II of this project.

All implemented algorithms (in Part II) will be simulated for the same  set  of processes, which will therefore support a comparative analysis of results. In Part I, the focus is on generating useful sets of processes via pseudo-random number generators.

Back to the conceptual model, when a process is in the READY state and reaches the front of the queue, once the CPU is free to accept the next process, the given process enters the RUNNING state and starts executing its CPU burst.

After each CPU burst is completed, if the process does not terminate, the process enters the WAITING  state, waiting for an I/O operation to complete (e.g., waiting for data to be read in from a file).  When the I/O operation completes, depending on the scheduling algorithm, the process either (1) returns to the READY  state and is added to the ready queue or (2) preempts the currently running process and switches into the RUNNING state.

Note that preemptions occur only for certain algorithms.

Algorithms — (Part II)

The four algorithms that you must simulate are first-come-first-served (FCFS); shortest job first (SJF); shortest remaining time (SRT); and round robin (RR). When you run your program, all four algorithms are to be simulated in succession with the same initial set of processes.

Each algorithm is summarized below.

First-come-first-served  (FCFS)

The FCFS algorithm is a non-preemptive algorithm in which processes simply line up in the ready queue, waiting to use the CPU. This is your baseline algorithm.

Shortest job first  (SJF)

In SJF, processes are stored in the ready queue in order of priority based on their anticipated CPU burst times.  More specifically, the process with the shortest predicted CPU burst time will be selected as the next process executed by the CPU. SJF is non-preemptive.

Shortest remaining time  (SRT)

The SRT algorithm is a preemptive version of the SJF algorithm. In SRT, when a process arrives, if it has a predicted CPU burst time that is less than the remaining predicted time of the currently running process, a preemption occurs.  When such a preemption occurs, the currently running process is added to the ready queue based on priority, i.e., based on its remaining predicted CPU burst time.

Round robin  (RR)

The RR algorithm is essentially the FCFS algorithm with time slice t slice.  Each process is given t slice  amount of time to complete its CPU burst. If the time slice expires, the process is preempted and added to the end of the ready queue.

If a process completes its CPU burst before a time slice expiration, the next process on the ready queue is context-switched in to use the CPU.

For your simulation, if a preemption occurs and there are no other processes on the ready queue, do not perform a context switch. For example, given process G is using the CPU and the ready queue is empty, if process G is preempted by a time slice expiration, do not context-switch process G back to the empty queue; instead, keep process G running with the CPU and do not count this as a context switch. In other words, when the time slice expires, check the queue to determine if a context switch should occur.

 

Simulation configuration  (extended from Part I)

The key to designing a useful simulation is to provide a number of configurable parameters. This allows you to simulate and tune for a variety of scenarios, e.g., a large number of CPU-bound processes, difering average process interarrival times, multiple CPUs, etc.

Define the simulation parameters shown below as tunable constants within your code, all of which will be given as command-line arguments. In Part II of the project, additional parameters will be added.

•  *(argv+1):  Define n as the number of processes to simulate.  Process IDs are assigned a two-character code consisting of an uppercase letter from A to Z followed by a number from

0 to 9. Processes are assigned in order A0, A1, A2, . . ., A9, B0, B1, . . ., Z9.

•  *(argv+2): Definen cpu as the number of processes that are CPU-bound. For this project, we will classify processes as I/O-bound or CPU-bound.  The n cpu   CPU-bound processes, when generated, will have CPU burst times that are longer by a factor of 4 and will have I/O burst times that are shorter by a factor of 8.

•  *(argv+3):  We will use a pseudo-random number generator to determine the interarrival times  of CPU bursts.  This command-line argument, i.e. seed, serves as the seed for the pseudo-random number sequence. To ensure predictability and repeatability, use srand48() with this given seed before simulating each  scheduling algorithm and drand48() to obtain the next value in the range [0.0, 1.0). Since Python does not have these functions, implement an equivalent 48-bit linear congruential generator, as described in the man page for these functions in C.

•  *(argv+4): To determine interarrival times, we will use an exponential distribution, as illus- trated in the exp-random .c example. This command-line argument is parameter λ; remember

that λ/1 will be the average random value generated, e.g., if λ = 0.01, then the average should be appoximately 100.

In the exp-random .c example, use the formula shown in the code, i.e., λ/− ln r.

•  *(argv+5):  For the exponential distribution, this command-line argument represents the upper bound for valid pseudo-random numbers.  This threshold is used to avoid values far down the long tail of the exponential distribution.  As an example, if this is set to 3000, all generated values above 3000 should be skipped. For cases in which this value is used in the ceiling function (see the next page), be sure the ceiling is still valid according to this upper bound.

•  *(argv+6): Define tcs  as the time, in milliseconds, that it takes to perform a context switch. Specifically, the first half of the context switch time (i.e., 2/tcs) is the time required to remove the given process from the CPU; the second half of the context switch time is the time required to bring the next process in to use the CPU. Therefore, require tcs  to be a positive even integer.

 

•  *(argv+7): For the SJF and SRT algorithms, since we do not know the actual CPU burst times beforehand, we will rely on estimates determined via exponential averaging.  As such, this command-line argument is the constant Q, which must be a numeric floating-point value in the range [0; 1].

Note that the initial guess for each process is τ0  = λ/1 .

Also, when calculating τ values, use the “ceiling” function for all calculations.

•  *(argv+8): For the RR algorithm, define the time slice value,t slice, measured in milliseconds. Require t slice  to be a positive integer.

Pseudo-random numbers and predictability  (from Part I)

A key aspect of this assignment is to compare the results of each of the simulated algorithms with one another given the same initial conditions, i.e., the same initial set of processes.

To ensure each CPU scheduling algorithm runs with the same set of processes, carefully follow the algorithm below to create the set of processes.

For each of the n processes, in order A0 through Z9, perform the steps below, with CPU-bound processes generated first. Note that all generated values are integers.

Define your exponential distribution pseudo-random number generation function as next_exp() (or another similar name).

1. Identify the initial process arrival time as the “floor” of the next random number in the sequence given by next_exp(); note that you could therefore have a zero arrival time

2. Identify the number of CPU bursts for the given process as the “ceiling” of the next random number generated from the uniform distribution obtained via drand48() multiplied by **; this should obtain a random integer in the inclusive range [1; **]

3. For each  of these CPU bursts, identify the CPU burst time and the I/O burst time as the “ceiling” of the next two random numbers in the sequence given by next_exp(); multiply the I/O burst time by 8 such that I/O burst time is close to an order of magnitude longer than CPU burst time; as noted above, for CPU-bound processes, multiply the CPU burst time by 4 and divide the I/O burst time by 8 (i.e., do not bother multiplying the original I/O burst time by 8 in this case); for the last CPU burst, do not generate an I/O burst time (since each process ends with a final CPU burst)

Simulation specifics  (Part II)

Your simulator keeps track of elapsed time t (measured in milliseconds), which is initially zero for each scheduling algorithm.  As your simulation proceeds, t  advances to each “interesting” event that occurs, displaying a specific line of output that describes each event.

The “interesting” events are:

•  Start of simulation for a specific algorithm

•  Process arrival (i.e., initially and at each I/O completion)

•  Process starts using the CPU

•  Process finishes using the CPU (i.e., completes a CPU burst)

•  Process has its τ value recalculated (i.e., after a CPU burst completion)

•  Process preemption (SRT and RR only)

•  Process starts an I/O burst

•  Process finishes an I/O burst

•  Process terminates by finishing its last CPU burst

• End of simulation for a specific algorithm

Note that the “process arrival” event occurs each time a process arrives, which includes both the initial arrival time and when a process completes an I/O burst. In other words, processes “arrive” within the subsystem that consists only of the CPU and the ready queue.

The “process preemption” event occurs each time a process is preempted.  When a preemption occurs, a context switch occurs, except when the ready queue is empty for the RR algorithm.

After you simulate each scheduling algorithm, you must reset your simulation back to the initial set of processes and set your elapsed time back to zero.

Note that there may be times during your simulation in which the simulated CPU is idle because no processes have arrived yet or all processes are busy performing I/O. Also, your simulation ends when all processes terminate.

If diferent types of events occur at the same time, simulate these events in the following order:

(a) CPU burst completion; (b) process starts using the CPU; (c) I/O burst completions; and

(d) new process arrivals.

Further, any “ties” that occur within  one of these categories are to be broken using process ID order.  As an example, if processes G1  and S9 happen to both complete I/O bursts at the same time, process G1 wins this “tie” (because G1 is lexicographically before S9) and is therefore added to the ready queue before process S9.

Be sure you do not implement any additional logic for the I/O subsystem.  In other words, there are no specific I/O queues to implement.

Measurements  (from Part I)

There are a number of measurements you will want to track in your simulation. For each algorithm, you will count the number of preemptions and the number of context switches that occur. Further, you will measure CPU utilization by tracking CPU usage and CPU idle time.

Specifically, for each  CPU  burst, you will track CPU burst time (given), turnaround time, and wait time.

CPU burst time

CPU burst times are randomly generated for each process that you simulate via the above algorithm. CPU burst time is defined as the amount of time a process is actually using the CPU. Therefore, this measure does not include context switch times.

Turnaround time

Turnaround times are to be measured for each process that you simulate.  Turnaround time is defined as the end-to-end time a process spends in executing a single  CPU  burst.

More specifically, this is measured from process arrival time through to when the CPU burst is completed and the process is switched out of the CPU. Therefore, this measure includes the second half of the initial context switch in and the first half of the final context switch out, as well as any other context switches that occur while the CPU burst is being completed (i.e., due to preemptions).

Wait time

Wait times are to be measured for each CPU burst. Wait time is defined as the amount of time a process spends waiting to use the CPU, which equates to the amount of time the given process is actually in the ready queue. Therefore, this measure does not include context switch times that the given process experiences, i.e., only measure the time the given process is actually in the ready queue.

CPU utilization

Calculate CPU utilization by tracking how much time the CPU is actively running CPU bursts versus total elapsed simulation time.

 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP501 ICT Fundamentals
  • 下一篇:BISM1201代做、代寫Python/Java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲女同同性videoxma| 亚洲国产欧美在线| 欧美成人嫩草网站| 亚洲一区二区在线| 亚洲欧洲日本mm| 国产婷婷色一区二区三区在线| 欧美jjzz| 另类春色校园亚洲| 欧美一区视频| 香蕉久久夜色精品| 亚洲伊人第一页| 在线综合亚洲| 亚洲精品乱码久久久久久久久| 国内精品国产成人| 国产伦精品一区二区三区高清版| 欧美日韩国产系列| 欧美精品尤物在线| 欧美激情小视频| 欧美寡妇偷汉性猛交| 蜜臀av一级做a爰片久久| 久久精品国产精品| 欧美中文字幕在线播放| 久久激情视频久久| 久久精品成人欧美大片古装| 亚洲欧美激情视频| 午夜欧美大片免费观看| 亚洲欧美日韩国产| 久久精品人人做人人爽电影蜜月| 亚洲欧美在线一区二区| 新67194成人永久网站| 亚洲欧美日韩在线观看a三区| 中文亚洲欧美| 午夜精品视频在线观看一区二区| 亚洲男女毛片无遮挡| 亚洲欧美日韩国产| 欧美在线播放视频| 老色批av在线精品| 欧美片在线播放| 国产欧美日韩综合精品二区| 欧美日韩精品在线观看| 欧美日韩在线一二三| 欧美日韩综合精品| 国产精品午夜在线| 一区精品在线播放| 亚洲国产精品久久久久秋霞蜜臀 | 国产精品尤物福利片在线观看| 欧美亚洲成人网| 国产性天天综合网| 亚洲国产日韩欧美| 亚洲欧美日韩高清| 女女同性女同一区二区三区91| 欧美理论电影在线观看| 国产精品综合色区在线观看| 韩国精品久久久999| 一区二区高清在线观看| 久久精品二区| 欧美精品激情blacked18| 国产精品人成在线观看免费 | 欧美成人一区二区在线| 欧美四级伦理在线| 亚洲电影免费在线观看| 亚洲无亚洲人成网站77777 | 久久久福利视频| 欧美日韩免费精品| 韩国美女久久| 国产精品99久久99久久久二8| 久久精品毛片| 欧美性猛交xxxx免费看久久久| 狠狠色噜噜狠狠色综合久| 一区二区欧美日韩| 欧美成人在线免费观看| 国产亚洲精品久久久久久| 亚洲天堂av在线免费| 欧美大片在线看免费观看| 国产一区二区你懂的| 亚洲免费在线视频一区 二区| 欧美福利精品| 在线观看欧美成人| 久久国产精品一区二区三区四区| 欧美体内谢she精2性欧美| 亚洲国产精品精华液2区45| 欧美一区二区三区视频| 国产精品第十页| 日韩午夜三级在线| 欧美成人精品一区二区| 亚洲国产导航| 麻豆精品视频在线观看| 红桃视频国产精品| 久久久无码精品亚洲日韩按摩| 国产精品性做久久久久久| 亚洲一区三区视频在线观看| 欧美日韩精品综合| 一本大道久久a久久精品综合| 欧美+日本+国产+在线a∨观看| 狠狠色狠色综合曰曰| 久久久久久999| 尤物yw午夜国产精品视频明星 | 国产日本欧洲亚洲| 午夜亚洲一区| 国产日韩1区| 久久精品国产成人| 在线免费精品视频| 欧美成人影音| 亚洲视频网站在线观看| 国产精品日韩一区二区| 欧美一级视频一区二区| 国内激情久久| 欧美国产欧美综合| 在线亚洲一区二区| 国产日韩精品在线| 美玉足脚交一区二区三区图片| 亚洲国产日韩在线一区模特| 欧美顶级艳妇交换群宴| 一区二区三区国产精华| 国产乱理伦片在线观看夜一区| 香蕉久久夜色精品| 精品99视频| 欧美日本一区二区高清播放视频| 亚洲网站在线播放| 国产亚洲日本欧美韩国| 欧美va亚洲va国产综合| 一区二区不卡在线视频 午夜欧美不卡在| 欧美婷婷久久| 久久久久久综合| 一区二区三区蜜桃网| 国产精品有限公司| 欧美激情va永久在线播放| 亚洲自拍高清| 亚洲国产成人av好男人在线观看| 欧美日韩国产一区二区| 久久精品91久久久久久再现| 亚洲精品1234| 国产亚洲网站| 欧美日韩国产在线一区| 久久国产主播| 亚洲一区二区三区在线观看视频| 国内精品久久久久影院优| 欧美日韩在线播放| 你懂的网址国产 欧美| 欧美一乱一性一交一视频| 久久夜色精品亚洲噜噜国产mv| 亚洲国产精品久久久久秋霞不卡 | 欧美承认网站| 欧美在线视频免费观看| 亚洲美女视频网| 亚洲成人影音| 好吊色欧美一区二区三区视频| 国产精品久久9| 欧美精品三级日韩久久| 久久精品视频在线播放| 欧美一区二区免费| 亚洲欧美激情诱惑| 一本一本a久久| 亚洲人成人一区二区在线观看| 国产日韩亚洲欧美| 国产精品日韩精品欧美在线| 欧美日韩国产色视频| 欧美电影美腿模特1979在线看| 久久久精品欧美丰满| 欧美伊人久久久久久久久影院| 亚洲综合视频1区| 99精品欧美一区| 一本大道久久a久久精二百| 亚洲免费观看视频| 日韩一级免费| 一本色道久久综合亚洲91| 9i看片成人免费高清| 一区二区三区精品国产| 99国产一区| 亚洲欧美日本在线| 欧美亚洲一区| 欧美一区二区三区另类| 久久久久久久久久久一区| 久久综合精品一区| 另类酷文…触手系列精品集v1小说| 久久深夜福利| 欧美风情在线观看| 欧美日韩亚洲天堂| 国产精品普通话对白| 国产视频在线观看一区二区三区| 国外成人在线视频网站| 亚洲国产高清aⅴ视频| 亚洲精品一二区| 亚洲已满18点击进入久久| 欧美一区二区三区精品| 免费久久精品视频| 欧美日韩免费观看一区| 国产精品婷婷| 狠狠久久亚洲欧美| 99精品免费| 久久久久久久久久久久久女国产乱| 久久久久9999亚洲精品| 欧美国产精品劲爆| 国产精品美女一区二区在线观看 | 久久精彩免费视频| 欧美jizzhd精品欧美巨大免费| 欧美日韩在线电影| 国产自产在线视频一区| 一区二区成人精品| 久久精品一区二区三区中文字幕|