合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做DATA7703、代寫Python程序語(yǔ)言

        時(shí)間:2024-08-16  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        S2 - 2024 DATA7703 – Machine Learning for Data Scientists
        Assignment 1
        Decision Trees
        Due date: Friday Aug 16 3pm
        1. Training a Decision Tree
        - First complete Q1 using the scikit-learn (sklearn) library (40%)
        - Next complete Q1 without using any ML libraries, (ie. implement a decision tree
        algorithm from scratch) (30%)
        Write a program in Python to implement the ID3 decision tree algorithm. You should read in
        a tab delimited dataset, and output to the screen the relevant results in some readable format.
         Name your program decisiontreeassignment.py
         Basic math and file reading functions from libraries such as numpy or pandas etc. are
        allowed.
        There are two sample datasets available from the course blackboard page you can use
         tennis.txt - Predict whether or not your tennis partner will join you to play tennis
        based on weather.
         titanic2.txt - Predict the survival status of individual passengers on the Titanic based
        on their passenger class, age and gender.
        For the dataset files
         The first line of the file will contain the name of the fields.
         The last column is the classification attribute, and will always contain the
        values yes or no.
         All files are tab delimited.
        When you run your program, it should take a command-line parameter that contains the name
        of the file containing the training data. For example:
        python decisiontreeassignment.py tennis.txt
        And it should output the training set accuracy in some readable form. You do not need to
        print or display the resulting tree (unless you want to).
        2. Max Tree Depth (15%)
        - First complete Q2 using scikit-learn (sklearn) library (10%)
        - Next complete Q2 without using any ML libraries (5%)
        Add to your implementation so that you can limit the maximin tree depth. It should now take
        an additional command-line parameter that sets the maximum tree depth. For example:
        python decisiontreeassignment.py tennis.txt 5
        3. Test Set (15%)
        - First complete Q3 using scikit-learn (sklearn) library (10%)
        - Next complete Q3 without using any ML libraries (5%)
        Add to your implementation so that you can also pass a file containing data not in the training
        data. It should now output the training set accuracy as well as the testing set accuracy in some
        readable form.
        The command-line call should now have a third parameter containing the name of the file
        containing the testing data. For example:
        python decisiontreeassignment.py tennis_trainingset.txt 5 tennis_testset.txt
        You can create training and testing sets by (randomly) splitting the available data
        appropriately.
        Submission
        Assignments to be completed individually and submitted through blackboard.
        Due date
        Friday Aug 16 3pm.

        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:代寫代做INF10025 Data Management and Analytic
      2. 下一篇:代做BSAN3212、代寫c/c++,Python程序語(yǔ)言
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: AV无码精品一区二区三区| 日本一区二区在线不卡| 国产第一区二区三区在线观看| 亚洲中文字幕无码一区 | 国产精品成人国产乱一区| 国产精品高清视亚洲一区二区| 一区二区三区四区免费视频| 成人免费一区二区三区| 久久免费视频一区| 精品国产一区二区三区久久蜜臀 | 国产精品久久久久一区二区| 中文字幕一区二区三区5566| 久久国产精品视频一区| 国产自产在线视频一区| 国产在线一区二区综合免费视频| 日韩人妻无码一区二区三区综合部| 国产一区二区三区在线电影| 在线一区二区观看| 濑亚美莉在线视频一区| 成人免费一区二区无码视频 | 色狠狠色噜噜Av天堂一区| 中文字幕精品无码一区二区| 日本中文字幕在线视频一区| 午夜视频久久久久一区| 国产精品一区二区av不卡| 国产成人精品无人区一区 | 无码人妻精品一区二区蜜桃网站| 精品国产乱子伦一区二区三区 | 国产内射999视频一区| 午夜精品一区二区三区免费视频| 东京热无码av一区二区| 国产成人精品无码一区二区| 色久综合网精品一区二区| 中文字幕一区二区精品区| 伊人久久精品无码麻豆一区| 日韩视频一区二区| 国产精品一区二区av不卡| 精品人无码一区二区三区| 久久精品成人一区二区三区| 色系一区二区三区四区五区| 国产一区二区三区免费观看在线|