合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做 COMPSCI 753、代寫 Python,c/c++編程設(shè)計(jì)

        時(shí)間:2024-08-12  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Algorithms for Massive Data
        Assignment 1 / Semester 2, 2024 Graph Mining
        General instructions and data
        This assignment aims at exploring the PageRank algorithm on big real-world network data. By working on this assignment, you will learn how to implement some of the PageRank algorithms that we have learned in class.
        Data: Download the web-Google web dataset ’web-Google-final.txt’ from the assignment page on Canvas1. Each line of the file represents a directed edge from a source node to a destination node. There are N = 875713 nodes. Nodes are represented by numeric IDs ranging from 0 to 875712.
        Submission
        Please submit: (1) a file (.pdf or .html) that reports the answers requested for each task, and (2) a source code file (.py or .ipynb) that contains your code and detailed comments. Submit this on the Canvas assignment page by 23:59 NZST, Sunday 11 August. The files must contain your student ID, UPI and name.
        Penalty Dates
        The assignment will not be accepted after the last penalty date unless there are special circumstances (e.g., sickness with certificate). Penalties will be calculated as follows as a percentage of the marks for the assignment.
        • 23:59 NZST, Sunday 11 August – No penalty
        • 23:59 NZST, Monday 12 August – 25% penalty • 23:59 NZST, Tuesday 13 August – 50% penalty
        1This dataset is adapted from SNAP http://snap.stanford.edu/data/web-Google.html
         
        Tasks (100 points)
        Task 1 [40 points]: Implementation of Power Iteration Algorithm.
        In this task you will implement the basic version of the Power Iteration algorithm for PageR- ank. This task involves two sub-tasks, as follows:
        (A) [25 points] Implement the power iteration algorithm in matrix form to calculate the rank vector r, without teleport, using the PageRank formulation:
        r(t+1) = M · r(t)
        The matrix M is an adjacency matrix representing nodes and edges from your downloaded dataset, with rows representing destination nodes and columns representing source nodes. This matrix is sparse2. Initialize r(0) = [1/N, . . . , 1/N]T . Let the stop criteria of your power iteration algorithm be ||r(t+1) − r(t)||1 < 0.02 (please note the stop criteria involves the L1 norm). Spider traps and dead ends are not considered in this first task.
        (B) [15 points] Run your code on the provided Google web data to calculate the rank score for all the nodes. Report: (1) The running time of your power iteration algorithm; (2) The number of iterations needed to stop; (3) The IDs and scores of the top-10 ranked nodes.
        Task 2 [10 points]: Understanding dead-ends.
        In this task, before extending your code to support dead-ends using teleport, you will run some analysis on your current implementation from Task 1. This second task involves two sub-tasks:
        (A) [5 points] Calculate and report the number of dead-end nodes in your matrix M.
        (B) [5 points] Calculate the leaked PageRank score in each iteration of Task 1 (B). The leaked PageRank score is the total score you lose in that iteration because of dead-ends (hint: see example on slide 2 of W1.3 lecture notes). Create a plot that shows how this leaked score behaves as iterations progress. Explain the phenomenon you observe from this visualization.
        2Consider using a sparse matrix (e.g., use scipy.sparse in Python) in your implementation, so that your algorithm should stop within a few seconds in a basic computer. If your algorithm can’t stop within several minutes, you may want to check your implementation.
         1

        Task 3 [50 points]: Implementation of Power Iteration with Teleport.
        In this task, you will extend your implementation from Task 1 using the teleport mechanism to handle both dead-ends and spider traps. This task involves three sub-tasks:
        (A) [25 points] Extend your PageRank code to handle both spider traps and dead ends using the idea of teleport. In this task, your implementation will allow to teleport randomly to any node. Code the PageRank with teleport formulation that, using the sparse matrix M, for each iteration works in three steps (slide 8 of W1.3 lecture notes):
        Step 1: Calculate the r ranks of current iteration rnew (in matrix form): rnew =βM·rold
        Step 2: Calculate the constant S for teleport:
        S = 􏰀 rnew
        j j
        Step 3: Update rnew with teleport:
        rnew = rnew + (1 − S)/N
        In your implementation, use β = 0.9. Initialize r(0) = [1/N,...,1/N]T. The stop criteria should be ||rnew − rold||1 < 0.02.
        (B) [15 points] Run your code on the provided Google web data to calculate the rank score for all the nodes. Report: (1) The running time; (2) The number of iterations needed to stop; (3) The IDs and scores of the top-10 ranked nodes.
        (C) [10 points] Vary the teleport probability β with numbers in the set: {1, 0.9, 0.8, 0.7, 0.6}. Report the number of iterations needed to stop for each β. Explain, in words, your findings from this experiment.




        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:MAS362 代寫、JAVA/C++編程設(shè)計(jì)代做
      2. 下一篇:MAST10006代做、Python/c++程序設(shè)計(jì)代寫
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
      4. 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 亚洲av无码片vr一区二区三区| 亚洲国产精品一区| 日本一区二区不卡视频| 国产成人一区二区精品非洲| 无码人妻久久一区二区三区| 香蕉视频一区二区| 国产在线一区二区视频| 另类国产精品一区二区| 日韩一区二区久久久久久| 中文字幕在线观看一区二区 | 久久精品一区二区三区资源网| 欧洲亚洲综合一区二区三区| 国产成人亚洲综合一区| 亚洲一区二区三区久久| 无码欧精品亚洲日韩一区| 伊人激情AV一区二区三区| 国产AV国片精品一区二区| 国产精品一区二区在线观看| 韩国精品福利一区二区三区| 无码一区二区波多野结衣播放搜索| 91久久精品国产免费一区| 久久久久人妻一区二区三区vr| 无码人妻久久一区二区三区| 久久免费区一区二区三波多野| 国产成人无码AV一区二区 | 亚洲熟妇AV一区二区三区宅男| 老熟女五十路乱子交尾中出一区| 久久久一区二区三区| 乱色精品无码一区二区国产盗| 中文字幕在线一区二区在线 | 在线播放国产一区二区三区 | 中文字幕无码不卡一区二区三区| 国产高清在线精品一区| 一区二区三区视频| 在线观看国产一区亚洲bd| 亚洲性日韩精品一区二区三区| 中文字幕一区二区三区有限公司| 国产激情无码一区二区app| 少妇精品无码一区二区三区| 学生妹亚洲一区二区| 精品无码一区二区三区水蜜桃|