99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

掃一掃在手機打開當前頁
  • 上一篇:中國人在越南遣返回國原因有哪些(越南被遣返怎么處理)
  • 下一篇:長沙旅行社代辦越南簽證多少錢(怎么選擇好的旅行社)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91麻豆精品国产91久久久久久久久| 亚洲女子a中天字幕| 美国十次综合导航| 一区二区三区四区在线| 亚洲影视资源网| 亚洲444eee在线观看| 日本成人中文字幕在线视频 | 欧美大尺度电影在线| 久久网站热最新地址| 自拍偷在线精品自拍偷无码专区| 蓝色福利精品导航| 韩国视频一区二区| 不卡av在线免费观看| 日本伦理一区二区| 欧美精品一区二区在线观看| 一区二区三区在线看| 国产露脸91国语对白| 色域天天综合网| 国产精品你懂的| 久久99国产精品久久99| 欧美午夜精品一区二区三区| 国产色一区二区| 久久成人免费电影| 欧美一卡在线观看| 亚洲一级二级三级在线免费观看| av电影在线观看一区| 国产精品无人区| 加勒比av一区二区| www激情久久| 国内国产精品久久| 日韩精品一区二区三区中文不卡| 亚洲一级二级三级在线免费观看| 色综合久久久网| 亚洲男人天堂av| 91蜜桃免费观看视频| 国产欧美日韩综合| 懂色av中文字幕一区二区三区| 精品国产乱码久久久久久免费| 黑人精品欧美一区二区蜜桃 | 欧美一区二区在线观看| 免费精品99久久国产综合精品| 欧美日韩卡一卡二| 久久精品国产99国产| 精品国精品自拍自在线| 麻豆成人免费电影| 欧美国产97人人爽人人喊| 99久久精品国产精品久久 | 日韩不卡手机在线v区| 日韩精品一区在线观看| 99精品视频一区二区| 亚洲一区二区五区| 精品久久久久久综合日本欧美| 成人综合在线观看| 日本aⅴ精品一区二区三区| 国产欧美久久久精品影院| 欧美日韩精品一区二区三区蜜桃 | 精品国产免费一区二区三区香蕉| 国产suv精品一区二区三区| 一区二区免费视频| 久久久久久一二三区| 91精品在线免费观看| 97精品久久久久中文字幕 | 日韩美女在线视频| 欧美午夜片在线看| 色综合色狠狠天天综合色| 丰满放荡岳乱妇91ww| 黑人精品欧美一区二区蜜桃 | 国产成人精品三级麻豆| 狂野欧美性猛交blacked| 五月婷婷另类国产| 亚洲国产精品影院| 一区二区三区四区在线播放| 亚洲视频免费观看| 亚洲大片在线观看| 中文字幕一区二区5566日韩| 亚洲桃色在线一区| 亚洲精品videosex极品| 一区二区三区加勒比av| 一区二区三区在线视频免费观看| 国产精品区一区二区三区| 中文字幕一区二区三区在线播放| 国产精品麻豆一区二区| 亚洲专区一二三| 奇米亚洲午夜久久精品| 国产尤物一区二区| 91免费观看在线| 欧美日韩国产另类不卡| 久久精品网站免费观看| 日韩和欧美的一区| 高清不卡一区二区在线| 欧美性感一区二区三区| 精品成人一区二区| 亚洲一区二区三区四区中文字幕| 久久激情综合网| 在线观看av不卡| 国产精品美女久久久久高潮| 美国十次了思思久久精品导航| av一区二区久久| 欧美成人精品高清在线播放| 亚洲免费资源在线播放| 精品一区二区三区香蕉蜜桃| 色婷婷亚洲一区二区三区| 久久久久久久久久久久久女国产乱 | 一区二区三区鲁丝不卡| 九色porny丨国产精品| 在线区一区二视频| 中文字幕不卡三区| 国产精品一二三| 久久天堂av综合合色蜜桃网| 美腿丝袜亚洲综合| 日韩免费观看高清完整版在线观看| 亚洲一区在线观看免费| 欧美性一区二区| 一区二区国产视频| 欧洲在线/亚洲| 蜜桃av一区二区在线观看| 日韩精品一区在线| 国产一区二区在线免费观看| 久久久国产精品麻豆| 免费的国产精品| 久久久99免费| 91久久国产最好的精华液| 亚洲一区二区三区自拍| 欧美一区二区久久久| 国产黄色精品视频| 亚洲国产精品一区二区久久 | 久久欧美中文字幕| 成人午夜av在线| 欧美aaa在线| 亚洲男人的天堂av| 精品久久久久香蕉网| 成人avav影音| 奇米影视在线99精品| 中文字幕中文字幕一区| 欧美日韩亚洲另类| 精品一区二区三区免费毛片爱 | 精品一区二区免费在线观看| 日韩精品一区二区三区swag| 国产成a人亚洲精| 国内精品国产三级国产a久久| 亚洲欧洲日产国产综合网| 日韩精品一区二区三区老鸭窝| av一区二区三区在线| 韩国女主播成人在线| 亚洲成av人片在线| 玉米视频成人免费看| 欧美tickling网站挠脚心| 欧美日韩一区 二区 三区 久久精品| 国产精品一区专区| 精品一区二区三区av| 麻豆成人综合网| 三级在线观看一区二区| 五月天欧美精品| 极品瑜伽女神91| 国产麻豆成人传媒免费观看| 久久激情五月激情| 国产资源在线一区| 久久99深爱久久99精品| 美女脱光内衣内裤视频久久影院| 香蕉加勒比综合久久| 曰韩精品一区二区| 亚洲一区二区三区影院| 天天综合色天天| 日韩av在线免费观看不卡| 久草在线在线精品观看| 国产麻豆9l精品三级站| 99久久精品国产导航| 欧洲视频一区二区| 欧美色综合影院| 2021久久国产精品不只是精品| 久久无码av三级| 亚洲国产精品一区二区尤物区| 处破女av一区二区| 欧美日韩国产乱码电影| 欧美一区二区三区视频| 中文字幕成人在线观看| 亚洲综合丁香婷婷六月香| 国产尤物一区二区在线| 制服.丝袜.亚洲.另类.中文| 最新国产成人在线观看| 国产毛片精品一区| 日韩一级黄色大片| 亚洲激情一二三区| 从欧美一区二区三区| 欧美精品一区二区三区蜜桃| 婷婷激情综合网| 欧美亚洲一区二区在线观看| 国产精品人人做人人爽人人添| 国产在线不卡一区| 欧美精品一区二区三区很污很色的 | 成人午夜av影视| 26uuu精品一区二区三区四区在线| 亚洲人成精品久久久久| 高清国产午夜精品久久久久久| 久久综合九色综合97_久久久| 精品一区二区三区日韩| 精品久久人人做人人爰| 国产成人精品亚洲777人妖| 国产精品丝袜一区| 91浏览器在线视频|