99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

掃一掃在手機打開當前頁
  • 上一篇:中國人在越南遣返回國原因有哪些(越南被遣返怎么處理)
  • 下一篇:長沙旅行社代辦越南簽證多少錢(怎么選擇好的旅行社)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          一区国产精品| 国外成人在线视频网站| 欧美一级久久久久久久大片| 国外成人网址| 国产精品视频久久久| 女同性一区二区三区人了人一| 9色精品在线| 雨宫琴音一区二区在线| 国产精品免费福利| 欧美激情视频一区二区三区免费| 欧美一区二区三区四区在线观看| 99精品视频免费观看| 影音先锋亚洲视频| 国产欧美一区二区三区久久| 欧美日韩国产91| 欧美大片网址| 欧美高清视频一二三区| 久久久91精品国产一区二区精品| 在线视频免费在线观看一区二区| 亚洲国产精品久久久久秋霞蜜臀| 国产一二三精品| 国产亚洲精品资源在线26u| 国产精品家庭影院| 国产精品国产成人国产三级| 欧美欧美午夜aⅴ在线观看| 美女91精品| 葵司免费一区二区三区四区五区| 久久久久国产精品人| 久久国产精品黑丝| 久久精品99国产精品日本| 新狼窝色av性久久久久久| 亚洲欧美日韩国产成人精品影院| 一本在线高清不卡dvd| aa国产精品| 亚洲一区二区在线| 欧美综合激情网| 久久影视精品| 欧美成年人视频| 欧美日本一区二区视频在线观看 | 欧美成人影音| 欧美激情五月| 国产精品久久777777毛茸茸| 国产精品r级在线| 国产精品永久免费观看| 国产农村妇女毛片精品久久麻豆| 国产欧美精品日韩| 国内精品99| 亚洲激情av在线| 亚洲一级二级在线| 久久精品一区二区三区四区 | 国产主播精品在线| 亚洲激情国产精品| 一本一本a久久| 欧美一区二区高清| 欧美刺激午夜性久久久久久久| 欧美精品一区二区三区在线播放| 国产精品成人一区二区三区吃奶| 国产精品一区二区男女羞羞无遮挡| 国产亚洲日本欧美韩国| 亚洲精品在线视频| 久久精品国产999大香线蕉| 麻豆国产精品va在线观看不卡| 欧美日韩不卡在线| 国产视频一区二区三区在线观看| 亚洲理伦电影| 久久久无码精品亚洲日韩按摩| 欧美激情一区二区三区蜜桃视频 | 国产精品久久看| 1024国产精品| 亚洲欧美一区二区原创| 欧美激情1区2区| 国产综合第一页| 亚洲自拍三区| 欧美日韩不卡合集视频| 伊人成年综合电影网| 亚洲女女女同性video| 欧美激情视频一区二区三区免费 | 激情成人av| 亚洲免费婷婷| 欧美色道久久88综合亚洲精品| 韩国av一区二区| 亚洲综合色自拍一区| 欧美精品一区二区三区四区| 狠狠综合久久av一区二区小说| 亚洲欧美色婷婷| 国产精品久久久久久av福利软件 | 欧美日韩一区二区三区在线观看免| 在线欧美不卡| 久久一区免费| 亚洲电影免费在线 | 国内精品久久久久久影视8| 亚洲一区www| 国产精品激情偷乱一区二区∴| 亚洲美女尤物影院| 欧美久久久久久久| 日韩视频精品在线| 欧美日韩高清区| 亚洲精品综合| 欧美性猛交xxxx乱大交蜜桃| 一区二区日韩伦理片| 欧美喷水视频| 在线视频欧美日韩精品| 欧美视频一区| 亚洲一区二区免费| 欧美视频在线播放| 亚洲综合国产| 国产综合欧美| 欧美成人国产一区二区| 亚洲伦理在线| 美女精品一区| 在线免费观看日本一区| 欧美极品在线播放| 一区二区日本视频| 国产精品区一区| 亚洲自拍偷拍网址| 国产区日韩欧美| 葵司免费一区二区三区四区五区| 91久久久久久久久久久久久| 欧美日本久久| 欧美自拍偷拍| 亚洲精品国产品国语在线app| 欧美日韩精品久久久| 亚洲制服av| 在线看无码的免费网站| 欧美精品成人| 性久久久久久久久久久久| 国产一区二区三区免费观看| 免费观看成人www动漫视频| 亚洲激情成人网| 国产精品综合视频| 欧美肥婆在线| 久久黄色网页| 99这里只有久久精品视频| 国产揄拍国内精品对白| 欧美精品日韩www.p站| 香蕉久久国产| 这里只有精品视频在线| 激情小说另类小说亚洲欧美| 欧美日韩国产色视频| 欧美在线视频导航| 亚洲少妇在线| 亚洲国产精品小视频| 国产精品天美传媒入口| 欧美xart系列高清| 性做久久久久久免费观看欧美 | 樱桃成人精品视频在线播放| 欧美日韩的一区二区| 久久亚洲综合色一区二区三区| 亚洲一级二级| 99re8这里有精品热视频免费| 激情文学一区| 国产午夜精品美女视频明星a级| 欧美人与性动交α欧美精品济南到| 久久av一区| 亚洲综合视频网| 亚洲午夜黄色| 一区二区日本视频| 亚洲精品色婷婷福利天堂| 精品不卡一区二区三区| 国产自产精品| 国产一区二区三区四区五区美女| 欧美视频中文一区二区三区在线观看| 毛片av中文字幕一区二区| 久久久久九九视频| 久久九九热re6这里有精品| 午夜久久99| 亚洲欧美成人精品| 亚洲一区一卡| 亚洲欧美视频一区| 欧美亚洲在线播放| 欧美一区二区三区免费在线看 | 国产欧美精品一区aⅴ影院| 国产精品美女主播| 国产欧美一区二区三区沐欲 | 国产在线欧美日韩| 韩日欧美一区| 亚洲激情欧美激情| 亚洲免费观看| 亚洲自拍三区| 欧美一级精品大片| 久久久久免费视频| 欧美国产日韩免费| 欧美日韩在线视频首页| 国产精品一区二区久久精品 | 久久精品综合网| 久久色在线播放| 欧美激情bt| 国产精品入口日韩视频大尺度| 国产欧美日韩视频在线观看| 国产一区二区三区观看| 亚洲激情国产精品| 亚洲一线二线三线久久久| 欧美专区在线| 欧美日韩国产精品一区二区亚洲| 国产精品久久久久久久久久妞妞 | 亚洲国产你懂的| 亚洲日本成人| 欧美一区深夜视频| 欧美成人激情视频| 国产精品视频xxxx|