99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
For instance, CW-0**2023141520000-Tom.zip
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




















 

掃一掃在手機打開當前頁
  • 上一篇:香港到越南簽證多久能下來(香港辦理越南簽證流程)
  • 下一篇:CSSE2010 代做、代寫 c/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美一级艳片视频免费观看| 免费视频久久| 日韩视频在线一区| 欧美日韩中文精品| 久久久久一区二区| 中文在线一区| 亚洲国产清纯| 国产亚洲成年网址在线观看| 免费观看亚洲视频大全| 午夜精品福利一区二区三区av | 日韩亚洲欧美综合| 在线成人h网| 国产亚洲成av人片在线观看桃| 欧美三日本三级三级在线播放| 麻豆成人精品| 久久亚洲精品网站| 久久久久久久久岛国免费| 午夜精品久久久久99热蜜桃导演| 一区二区三区视频在线看| 亚洲国产精品传媒在线观看| 国内精品久久久久影院薰衣草| 国产九九精品视频| 国产欧美日韩在线观看| 国产精品理论片| 国产精品久久久久永久免费观看 | 欧美精品粉嫩高潮一区二区| 麻豆精品视频在线观看| 久久艳片www.17c.com| 久久精品中文字幕免费mv| 久久国产精品一区二区三区| 久久精品国产99| 久久国产精品99精品国产| 久久爱www久久做| 欧美中文字幕视频| 久久一区二区三区四区五区| 久久视频一区二区| 欧美国产一区二区| 欧美日韩影院| 国产欧美一区二区色老头 | 国产精品午夜av在线| 国产欧美欧洲在线观看| 国内久久婷婷综合| 国产精品夫妻自拍| 欧美视频在线一区| 欧美日韩国产综合视频在线观看| 欧美99在线视频观看| 欧美国产欧美亚州国产日韩mv天天看完整| 欧美日本一区二区视频在线观看| 欧美一级大片在线免费观看| 精品av久久久久电影| 欧美在线三区| 国产精品女人毛片| 国产精品视频免费观看www| 亚洲欧美激情一区二区| 国产一区二区三区精品久久久 | 一区二区在线免费观看| 欧美88av| 国产区精品视频| 欧美精品一区在线发布| 国产精品久久久久久久久久久久| 欧美日本韩国一区| 欧美午夜精品久久久久久孕妇| 欧美精品一线| 久久精品国产综合| 欧美电影免费观看| 欧美日本韩国一区二区三区| 国产精品国产三级国产专区53| 在线观看成人网| 欧美日韩国产高清| 国产裸体写真av一区二区| 欧美高清在线精品一区| 欧美日韩日日夜夜| 国产亚洲一区二区精品| 亚洲精品老司机| 午夜亚洲福利在线老司机| 国产视频久久久久久久| 亚洲综合视频网| 亚洲视频日本| 香蕉乱码成人久久天堂爱免费| 伊大人香蕉综合8在线视| 亚洲欧美怡红院| 国产精品美女久久久免费| 久久国产一区| 在线观看日韩av先锋影音电影院| 在线观看欧美一区| 乱码第一页成人| 激情综合自拍| 欧美在线视频免费| 最新日韩在线视频| 久久久一区二区三区| 亚洲尤物在线视频观看| 国产精品久久国产三级国电话系列| 在线观看91精品国产入口| 午夜精彩国产免费不卡不顿大片| 欧美一区二区精品在线| 国产综合av| 欧美精品一区二区三区在线看午夜 | 国产精品日韩一区二区| 欧美一区二区在线免费播放| 欧美成人免费大片| 国产精品国产亚洲精品看不卡15 | 久久亚洲不卡| 亚洲高清在线播放| 欧美不卡激情三级在线观看| 日韩一级二级三级| 影音先锋另类| 亚洲视频axxx| 久久久国产亚洲精品| 国产亚洲福利| 久久爱www.| 在线观看日韩精品| 欧美激情视频给我| 一区二区三区国产在线观看| 欧美日韩另类在线| 亚洲无限乱码一二三四麻| 国产精品久久久久久久午夜| 亚洲欧美日韩国产综合| 国产性天天综合网| 欧美成人一区二区三区| 一本久久综合亚洲鲁鲁| 国产精品视频yy9099| 久久亚洲二区| 亚洲欧洲综合| 国产精品久久久久久久久果冻传媒| 欧美一区二区私人影院日本| 在线观看日韩一区| 欧美午夜精品理论片a级大开眼界 欧美午夜精品理论片a级按摩 | 在线观看视频免费一区二区三区| 美女网站久久| 亚洲一区二区三区四区视频| 伊人伊人伊人久久| 国产精品久久久久久久久搜平片 | 亚洲精品永久免费| 国产精品mm| 美女在线一区二区| 午夜欧美不卡精品aaaaa| 亚洲风情在线资源站| 国产精品豆花视频| 欧美顶级艳妇交换群宴| 羞羞答答国产精品www一本| 亚洲精品乱码久久久久久日本蜜臀| 国产精品视频第一区| 欧美精品二区| 久久午夜精品一区二区| 亚洲自拍偷拍麻豆| 亚洲裸体视频| 在线观看视频一区二区| 国产欧美日韩综合一区在线播放| 欧美日韩第一区| 欧美α欧美αv大片| 久久久精品五月天| 久久精品亚洲精品| 欧美亚洲一区在线| 亚洲永久免费av| 中文国产一区| 一区二区三区毛片| 一本一本久久| 亚洲九九精品| 最新亚洲视频| 亚洲乱码国产乱码精品精| 国内一区二区三区在线视频| 国产精品一二三四区| 欧美~级网站不卡| 久久青青草原一区二区| 国内精品久久久| 在线看欧美日韩| 在线观看久久av| 好吊妞**欧美| 一区二区三区在线视频观看 | 国产精品激情| 欧美女激情福利| 国内精品久久久| 宅男精品导航| 久久午夜精品一区二区| 欧美三级网址| 伊人影院久久| 欧美亚洲视频在线观看| 欧美精品自拍偷拍动漫精品| 国产日韩欧美精品在线| 一本色道久久综合亚洲91| 久久一区二区三区av| 国产精品久久久久一区| 亚洲三级电影全部在线观看高清| 欧美在线视频a| 国产精品久久久久一区二区| 亚洲裸体视频| 免费在线欧美视频| 国产综合第一页| 性欧美xxxx大乳国产app| 欧美日韩精品三区| 亚洲欧洲一区| 欧美成年人视频网站| 国产最新精品精品你懂的| 亚洲中午字幕| 欧美日韩国产成人在线免费| 亚洲国产欧美精品| 久久免费视频一区| 狠狠爱综合网| 久久久精品日韩欧美| 国产日韩久久|