99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
For instance, CW-0**2023141520000-Tom.zip
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




















 

掃一掃在手機打開當前頁
  • 上一篇:香港到越南簽證多久能下來(香港辦理越南簽證流程)
  • 下一篇:CSSE2010 代做、代寫 c/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产91精品一区二区| 欧美日韩另类一区| 欧美日韩国产乱码电影| 一区二区三区四区在线| 在线观看视频欧美| 日韩精品一级中文字幕精品视频免费观看 | 日韩欧美亚洲国产另类| 午夜精品国产更新| 91精品免费观看| 国产精品资源在线看| xf在线a精品一区二区视频网站| 亚洲国产cao| 日韩精品一区二区三区蜜臀| 久久99九九99精品| 国产日韩欧美亚洲| 国产一区二区三区美女| 欧美在线观看一区二区| 婷婷国产v国产偷v亚洲高清| 日韩免费观看2025年上映的电影 | 欧美日韩视频一区二区| 亚洲综合成人网| 91在线丨porny丨国产| 亚洲成人av在线电影| 久久伊99综合婷婷久久伊| 91在线视频观看| 亚洲成人av一区二区| 国产精品婷婷午夜在线观看| 欧美日韩国产三级| 美脚の诱脚舐め脚责91 | 亚洲123区在线观看| 国产亚洲欧美激情| 欧美一级在线免费| 一本色道久久综合精品竹菊| 精品无人区卡一卡二卡三乱码免费卡 | 偷拍一区二区三区四区| 成人午夜短视频| 亚洲成精国产精品女| 亚洲天堂网中文字| 久久久精品天堂| 欧美一级高清大全免费观看| 色综合色狠狠天天综合色| 国内精品国产三级国产a久久| 亚洲妇熟xx妇色黄| 亚洲色图一区二区| 久久综合久久综合久久综合| 日韩一区二区在线观看视频播放| 欧美三级三级三级| 欧美日韩国产天堂| 欧美一区二区三区爱爱| 6080yy午夜一二三区久久| 色老头久久综合| 色婷婷av一区| 欧美在线观看禁18| 色综合久久九月婷婷色综合| av亚洲精华国产精华精华 | 精品中文字幕一区二区小辣椒| 亚洲精品国产无套在线观| 国产精品久久久久影院亚瑟 | 久久久国产精华| 欧美不卡视频一区| 久久亚洲精精品中文字幕早川悠里 | 成人一区二区三区在线观看 | 欧美巨大另类极品videosbest | 欧美影院一区二区| 欧美在线一区二区| 欧美三级视频在线播放| 4438x亚洲最大成人网| 欧美大片一区二区| 国产网红主播福利一区二区| 久久夜色精品一区| 亚洲欧美日韩国产中文在线| 亚洲黄色小说网站| 亚洲无线码一区二区三区| 婷婷丁香久久五月婷婷| 激情久久五月天| 成人黄色国产精品网站大全在线免费观看 | 日韩一级黄色片| 国产亚洲成av人在线观看导航| 中文字幕亚洲欧美在线不卡| 亚洲美女免费在线| 免费高清在线一区| 99久久精品一区二区| 欧美在线播放高清精品| 日韩欧美黄色影院| 国产精品国产三级国产a| 亚洲自拍与偷拍| 国产乱人伦偷精品视频免下载| 91亚洲精品久久久蜜桃网站| 欧美日韩成人一区二区| 亚洲精品一线二线三线无人区| 国产精品美女久久久久久久久 | 首页国产丝袜综合| 国产精品一卡二| 色av综合在线| 国产亚洲精久久久久久| 午夜激情久久久| 风流少妇一区二区| 正在播放一区二区| 综合分类小说区另类春色亚洲小说欧美| 一区二区三区日韩精品视频| 狠狠色狠狠色综合| av不卡在线播放| 日韩网站在线看片你懂的| 国产日韩av一区| 亚洲黄色小视频| 国产精品一级二级三级| 欧美日韩黄视频| 国产欧美一区二区精品性色| 丝袜脚交一区二区| 97久久超碰国产精品| 精品国产精品网麻豆系列| 夜夜精品视频一区二区| 床上的激情91.| 日韩视频免费直播| 香港成人在线视频| 高清成人在线观看| 欧美日本精品一区二区三区| 国产精品久久久久久久浪潮网站 | 国产一区二区三区在线观看免费| 欧美日韩一区小说| 亚洲欧美电影一区二区| k8久久久一区二区三区| 中文字幕乱码久久午夜不卡| 国产一区二区三区国产| 精品国产百合女同互慰| 免费观看在线综合| 91精品国产综合久久小美女| 青青草国产精品亚洲专区无| 欧美老女人第四色| 欧美a级一区二区| 欧美成人精品二区三区99精品| 久久精品国产精品青草| 欧美一级久久久久久久大片| 日韩电影在线一区二区| 欧美日韩国产另类不卡| 久久国产生活片100| 精品国产91久久久久久久妲己 | 7777精品伊人久久久大香线蕉| 亚洲自拍欧美精品| 欧美性生活影院| 日韩av电影免费观看高清完整版 | 久久福利资源站| 精品成人一区二区三区四区| 国产91精品在线观看| 最新久久zyz资源站| 欧美三级视频在线播放| 久久精品国产77777蜜臀| 2017欧美狠狠色| 99r国产精品| 亚洲成人动漫一区| 久久九九久久九九| 日本电影亚洲天堂一区| 毛片不卡一区二区| 国产精品久久久久影视| 欧美精品tushy高清| 精品一区二区三区在线观看| 国产精品久久久久影院亚瑟| 69堂精品视频| 成人精品视频一区二区三区 | 在线电影院国产精品| 裸体歌舞表演一区二区| 亚洲欧洲三级电影| 日韩免费观看2025年上映的电影| 成人激情文学综合网| 视频一区二区欧美| 中文一区二区在线观看| 7777女厕盗摄久久久| 99精品欧美一区二区三区小说| 亚洲最快最全在线视频| 精品精品国产高清a毛片牛牛| 色综合天天综合网天天看片| 精品一区二区日韩| 亚洲第一精品在线| 亚洲欧美一区二区视频| 日韩精品一区二区三区在线播放| a4yy欧美一区二区三区| 久久成人精品无人区| 亚洲成人资源网| √…a在线天堂一区| 久久久.com| 欧美精品一区二区三区四区| 欧美日韩精品欧美日韩精品| 97精品电影院| 成人app在线| 成人妖精视频yjsp地址| 国产精品888| 国产呦萝稀缺另类资源| 亚洲大片一区二区三区| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆 | 精品国产乱码久久久久久牛牛| 欧美色网站导航| 欧亚洲嫩模精品一区三区| 成人动漫精品一区二区| 国产丶欧美丶日本不卡视频| 韩国欧美国产1区| 亚洲成人在线免费| 亚洲国产精品一区二区久久 | 美女一区二区三区在线观看| 亚洲综合激情网| 午夜国产不卡在线观看视频|