99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STSCI 4060代做、代寫Python設計程序
STSCI 4060代做、代寫Python設計程序

時間:2024-05-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STSCI **0/5045 Final Project 
(Due: 4:30 PM, May 16, 2024) 
Important: Read and follow this whole document carefully! 
How to submit: submit your project report to the Canvas course website with a single zip file, 
which combines all your files. 
General instructions: 
• Do your own work. Any cheating behavior (for example, submitting code similar to 
that of other student(s), copying code from an Internet source, etc.) may result in a 
serious consequence (e.g., getting zero points, failing the class, …). If you have a 
question about the project, you should directly email your instructor. 
• Start the project early. Programming is time consuming; you will need significant 
amount of time and patience to code some portions of the project. Do not expect to 
finish it on the due day. 
• Test your code (especially the .cgi files) separately from other systems. When you have 
multiple software systems connected, it is harder to debug. 
• Add sufficient documentation to your code so that people understand your algorithm 
and what your code does. This is a requirement of this project. 
• Do not edit the raw data file in any way. Your results will be compared to the standard 
solutions. 
• Make sure that you have included all the components in your submission (see the 
details at the end of this document on pages 3 and 4). Your grader will run your 
programs on his/her computer; if something is missing your programs will not run. 
 
In this project you will have an opportunity to integrate Python programming, Oracle database, 
database-driven dynamic web pages, and Python data analysis modules with Jupyter (IPython) 
notebook using the data that are processed with the above integration. You are given a raw 
data file, honeybee_gene_sequences.txt, which was downloaded from the NCBI web site. We 
dealt with the protein data in the class; however, genes are different kinds of biomolecules. 
Unlike proteins that are composed of 20 amino acids, genes are only formed with four building 
elements: adenine (A), cytosine (C), guanine (G) and thymine (T). They are called nucleotides, a 
sequence of which forms a gene, which then determines the sequence of a protein. Thus, the 
compositions of the nucleotides and their relative frequencies, especially the combined relative 
frequency of C and G (i.e., the sum of the percentages of C and G in a gene sequence), have 
important biological (or medical) meanings. For this project, you will do the following: 
 
 1. Design a web page (using KompoZer or another similar program) to allow a user to enter 
a file name (here honeybee_gene_sequences.txt) and the full path to the location where 
the file is stored so that the user can upload the data file by clicking the Submit button 
on the web page. 
2. Write a specific .cgi file with Python to accept the user input from the web page, process 
the data and store the processed data in an Oracle database table, which is also created 
 
within the .cgi file using the Python-Oracle integration approach. In this .cgi file, you 
need to at least include the following functions: 
 
 A. The main() function to receive the user input from the web page. 
B. The processInput() function to do the following: 
a) Read in the contents of the data file. 
b) In order to extract the right nucleotide (or gene) sequences for all 
possible cases (you can see that most times the nucleotide sequences 
start right after the substring, mRNA, but not always), you are required to 
insert the substring, _**gene_seq_starts_here**_, right before the 
nucleotide sequences of every bee gene (or entry) through Python 
programming when you read in (or process) the raw data line by line. In 
this way, you will use the _**gene_seq_starts_here**_ substring as the 
starting point to extract the nucleotide sequences later. Note: There are 
different ways to extract the genes from the raw data. For the 
requirement specified above, you should just treat it as a programming 
requirement of this project. 
c) Extract the gi number and nucleotide sequence of each gene (or entry). 
d) Make sure that your Python program correctly reads in the gene (or 
nucleotide) sequence of the last entry in the raw data file. 
e) Calculate the relative frequencies of each nucleotide in every gene. 
f) Calculate the combined relative frequency of the nucleotides G and C, 
freq_GC, which is obtained by adding the relative frequencies of G and C. 
g) Connect Python to the Oracle database system. 
h) Create an Oracle table called beeGenes to store gi numbers, nucleotide 
sequences, the relative frequencies of the four nucleotides and the 
combined relative frequencies of the nucleotides G and C, freq_GC. So, 
your beeGenes table has seven columns. 
i) When you write the data to the database table, you are required to use 
the Oracle bind variable approach and the batch writing method by 
setting the bindarraysize to a certain number (refer to the lecture slides if 
needed). 
j) In order not to truncate any gene sequence, you need to find an 
appropriate number for the sequence input size. Thus, you are required 
to write a separate Python program (which should also be submitted for 
grading) to determine the maximum number of nucleotides of all the 
genes in the data file. 
C. fileToStr() to return a string containing the contents of the named html file. 
D. makePage() to make the final formatted string (or webpage) for displaying on a 
web page. 
3. Design a template web page to acknowledge that the uploading process was successful 
and that the data were processed and stored in the database as planned. There is a 
button on which a user can click if the user wants to see some results, retrieved from 
the Oracle database table you just created. 
4. Code another .cgi file with Python to retrieve data from the database table (beeGenes). 
The functions you need are similar to those in the previous .cgi file, but in the 
processInput() function, you are required to use a Python dictionary and the format 
 
string mechanism when you extract data from beeGenes. In this function, you will run 
queries against the beeGenes table to find the gi numbers of those bee genes that have 
the highest relative frequencies of nucleotide A, C, G, or T so that you can display these 
on the final web page when the user clicks the “Click to See Some Result” button on the 
confirmation page of data submission. Note that you may have a situate when multiple 
genes meet the same condition. Your code should take care of this kind of situation 
automatically. When that happens, you must list all the gi numbers in the same cell of 
your webpage table, with one gi number per line. 
5. Design another template web page to display the results gathered from the database. 
Inserting a hyperlink of the nucleotides to another web page is optional. 
6. You use the local server to run all the web services in this project, using port number 
8081. 
7. Write a Python program to run a query against the Oracle table beeGenes to show that 
you earlier successfully extracted the gene sequence of the last entry of the raw data 
file. To do so, you run a query for the gene sequence by providing the related gi number, 
which is 1****7436. Include both your Python code and the query result in your report. 
8. Connect Python to the Oracle database and conduct a K-Means cluster analysis in a 
Jupyter notebook. You should only use three columns in the beeGenes table: freq_A 
(relative frequency of the nucleotide A), freq_T (relative frequency of the nucleotide T) 
and freq_GC for this analysis due to some biological reasons. 
 
In your Jupyter notebook, you should use three cells: the 1st
 cell is for importing all 
the necessary Python modules for this analysis; the 2nd cell is to connect Python to 
your Oracle database and create a numpy array containing the three columns of 
data that are read from the beeGenes table in your Oracle database; and the 3rd cell 
is for carrying out the K-Means analysis and plotting a 3D scatter plot using the three 
columns of data based on the clusters identified by the K-Means analysis. 
 
The K-Means settings are: n_cluster=7, init='random', n_init=10, max_iter=500, 
tol=1e-4, and random_state=0. Then, you create a scatter plots with a total figure 
size of 14X14. Use the same type of marker ('o') for all the clusters, set s to 20, set 
labels to "Cluster 1" to "Cluster 7" for the cluster values of 0 to 6 that are found by 
the K-Means algorism, respectively. Set the colors as follows: red for Cluster 1, blue 
for Cluster 2, aqua for Cluster 3, black for Cluster 4, purple for Cluster 5, magenta for 
Cluster 6, and green for Cluster 7. 
 
Mark the centroid of each cluster with a star: set s to 100, color to red and label to 
Centroids. Give the title "K-Means" to the plot. The legends should be displayed in 
the upper right corner of the plot. 
 
After your code works correctly, run all the cells in your Jupyter notebook at once. 
Submit the notebook file (.ipynb) and an HTML file of the same notebook (.html). 
 
Your report should at least contain the following items: all your code, outputs and screenshots, 
which must be combined into a single PDF file, arranged in the order they appear in the project. 
You must mark all your items clearly. Moreover, your Python and html program files must be 
 
submitted as separate files, which must be kept in the same folder (no subfolders) so that your 
grader can run your programs easily. The following is a detailed list of the files/items to submit. 
 
• All Python program files (with the .py extension), including the program to find the 
maximum number of nucleotides in a gene sequence and the program to query the 
database to confirm that you successfully extracted the gene sequence of the last 
entry of the raw data file. 
• All .cgi files, which are technically Python files but contain the .cgi extension. 
• All .html files, including the template and non-template .html files. 
• The design window of your input web page. 
• The design windows of your two template web pages. 
• A screenshot of your input web page with the input value entered. 
• A screenshot of your confirmation web page that displays that you have successfully 
submitted the data, etc. 
• A screenshot of your final web page that displays the results of database query 
similar to the following screenshot (but it is only an example here, and the actual 
results were erased). 
 
• A screenshot of the local CGI server log. 
• The result of Oracle table query for the gene sequence of the last entry, which 
should be a Python shell screenshot (you may need more than one screen to display 
the complete sequence). 
• Your Jupyter notebook file (.ipynb). 
• The Jupyter notebook HTML file (.html). 
• The localCGIServer.py file. 
• The raw data file, honeybee_gene_sequences.txt. 
 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















 

掃一掃在手機打開當前頁
  • 上一篇:IERG2080代做、代寫C/C++程序語言
  • 下一篇:菲律賓開車需要駕照嗎(開車注意事項)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          伊甸园精品99久久久久久| 久久国产精品色婷婷| 亚洲精品一区二区网址| 99国产精品久久久久久久久久 | 国产欧美日韩亚洲精品| 国产区二精品视| 亚洲国产mv| 一区二区三区日韩欧美精品| 午夜精品久久久久久久久久久久久 | 久久亚洲影音av资源网| 六月丁香综合| 欧美日韩激情小视频| 国产精品免费看| 在线视频观看日韩| 亚洲综合电影一区二区三区| 久久九九电影| 欧美日韩精品一区二区在线播放| 国产精品一区免费在线观看| 亚洲福利视频网| 午夜精品福利电影| 欧美国产极速在线| 国产伊人精品| 亚洲天堂av在线免费观看| 久久精品国产亚洲高清剧情介绍| 欧美日本国产在线| 在线日韩一区二区| 欧美一区观看| 国产精品草草| 亚洲国产精品成人久久综合一区| 欧美一级视频| 国产精品久久91| 亚洲人成人一区二区三区| 欧美一区二区三区视频免费| 欧美另类人妖| 亚洲欧洲综合另类在线| 欧美在线免费看| 国产精品毛片va一区二区三区| 亚洲第一精品福利| 久久久久久久久久久成人| 欧美视频免费在线观看| 亚洲精品国久久99热| 久久青青草综合| 国产精品视频一区二区三区| 亚洲视频在线视频| 欧美人在线视频| 亚洲精选一区二区| 久久精品免费电影| 欧美电影美腿模特1979在线看| 国产日韩欧美在线播放不卡| 先锋影音久久久| 欧美精品尤物在线| 一本一本久久a久久精品综合麻豆| 欧美波霸影院| 久久国产精品99国产| 亚洲无线观看| 中文成人激情娱乐网| 欧美成人一品| 国产欧美精品日韩精品| 一区二区精品国产| 亚洲永久在线| 免费av成人在线| 欧美日韩在线不卡| 欧美另类变人与禽xxxxx| 欧美一区二区网站| 国产精品99久久久久久宅男| 日韩一级网站| 香蕉av777xxx色综合一区| 亚洲欧美在线免费| 亚洲精品亚洲人成人网| 亚洲国产日韩欧美在线图片| 久久国产直播| 欧美自拍偷拍午夜视频| 久久一区二区三区四区五区| 欧美精品一区二区三区在线播放 | 91久久精品国产| 欧美电影免费观看| 亚洲美女视频网| 国产精品第2页| 久久精品欧美日韩| 伊人成人开心激情综合网| 久久一区免费| 亚洲视频在线一区观看| 国产欧美一区二区三区另类精品| 久久久久.com| 亚洲精品美女91| 国产深夜精品| 欧美日韩成人在线| 亚洲欧美日韩一区二区在线| 伊人成人在线视频| 欧美日韩在线看| 久久免费偷拍视频| 夜色激情一区二区| 激情懂色av一区av二区av| 欧美巨乳在线观看| 欧美在线视频一区| 亚洲精品韩国| 精品69视频一区二区三区| 欧美视频专区一二在线观看| 久久网站免费| 午夜精品久久久久久久蜜桃app | 亚洲自拍另类| 亚洲激情婷婷| 好吊色欧美一区二区三区四区| 欧美精品久久久久久久免费观看| 久久精品成人欧美大片古装| 宅男精品视频| 亚洲国产精品一区二区www在线| 国产精品久久久久天堂| 欧美搞黄网站| 裸体歌舞表演一区二区| 欧美一区二区三区免费大片| 亚洲精品国产精品国自产观看浪潮| 国产精品人人爽人人做我的可爱| 男女精品网站| 久久夜精品va视频免费观看| 亚洲欧美日韩久久精品| 99精品福利视频| 亚洲人成网站在线观看播放| 一区二区三区在线视频观看| 国产人成一区二区三区影院| 国产精品久久久久免费a∨大胸| 欧美精品国产| 欧美人与性动交α欧美精品济南到| 久久五月婷婷丁香社区| 久久免费视频一区| 久久国产精品99久久久久久老狼| 新狼窝色av性久久久久久| 在线视频欧美日韩| 亚洲无亚洲人成网站77777 | 国产精品入口日韩视频大尺度| 欧美日韩国产小视频在线观看| 欧美不卡一区| 欧美精品乱人伦久久久久久 | 欧美一二三视频| 亚洲图中文字幕| 亚洲视频在线观看一区| 宅男噜噜噜66一区二区66| 日韩亚洲国产精品| 一本一本大道香蕉久在线精品| 99re8这里有精品热视频免费| 日韩亚洲欧美高清| 亚洲图片激情小说| 中文在线不卡视频| 亚洲欧美怡红院| 久久久久久穴| 欧美1区免费| 欧美视频网址| 国内精品嫩模av私拍在线观看 | 国语自产精品视频在线看8查询8| 韩国精品在线观看| 亚洲欧洲精品一区二区三区不卡 | 亚洲一区在线直播| 欧美在线视频网站| 免费黄网站欧美| 欧美日韩国产影院| 国产日韩一区在线| 亚洲国产精品专区久久| 亚洲大胆人体视频| 一区二区三区视频在线播放| 新67194成人永久网站| 鲁鲁狠狠狠7777一区二区| 欧美日韩免费视频| 国内精品久久久久久久影视麻豆| 亚洲高清电影| 午夜欧美大片免费观看| 鲁大师影院一区二区三区| 欧美日韩一区高清| 国产一二三精品| 日韩视频在线观看一区二区| 欧美制服丝袜| 欧美午夜在线观看| 亚洲国产精品综合| 欧美在线观看网址综合| 欧美日韩的一区二区| 国内精品写真在线观看| 一二三区精品| 免费亚洲一区二区| 国产亚洲精品高潮| 亚洲午夜精品久久久久久浪潮| 开心色5月久久精品| 国产精品裸体一区二区三区| 亚洲激情在线播放| 久久久久久亚洲精品杨幂换脸| 欧美午夜激情在线| 亚洲日本理论电影| 久久精品国产亚洲精品| 国产精品理论片| 亚洲乱码国产乱码精品精| 久热re这里精品视频在线6| 国产日韩欧美精品一区| 亚洲网站视频福利| 欧美极品在线播放| 亚洲国产精品第一区二区三区| 欧美在线free| 国产日本欧美一区二区三区| 日韩亚洲欧美精品| 欧美激情精品久久久久久| 一区在线影院| 久久久国产视频91| 国产一区久久久|