99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CS 412代做、代寫Python設計程序

時間:2024-05-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 412: Spring ’24
Introduction To Data Mining
Assignment 5
(Due Monday, April 29, 23:59)
• The homework is due on Monday, April 29, 2024, at 23:59. Note that this is a hard deadline. We are
using Gradescope for all homework assignments. In case you haven’t already, make sure to join this
course on Gradescope using the code shared on Canvas. Contact the TAs if you face any technical
difficulties while submitting the assignment. Please do NOT email a copy of your solution. We will
NOT accept late submissions (without a reasonable justification).
• Please use Campuswire if you have questions about the homework. Make sure to appropriately tag your
post. Also, scroll through previous posts to make sure that your query was not answered previously.
In case you are sending us an email regarding this Assignment, start the subject with “CS 412 Spring
’24 HW5:” and include all TAs and the Instructor (Jeffrey, Xinyu, Kowshika, Sayar, Ruby).
• Please write your code entirely by yourself. All programming needs to be in Python 3.
• The homework will be graded using Gradescope. You will be able to submit your code as many times
as you want.
• The grade generated by the autograder upon submission will be your final grade for this assignment.
There are no post deadline tests.
• Do NOT add any third-party libraries in your code. Built-in Python libraries are allowed.
• For submitting on Gradescope, you would need to upload a Python file named homework5.py. A
python file named homework5.py containing starter code is available on Canvas.
• You are provided two sample test cases on Canvas, you can try debugging your code with minsup
values of 2 or 3 with the given sample inputs. On Gradescope, your code will be evaluated on these
sample test cases as well as additional test cases. You will get autograder feedback for the sample test
cases but not for the other hidden test cases.
• Late submission policy: there will be a 24-hour grace period without any grade reduction, i.e., Gradescope will accept late submissions until Tuesday, April 30, 2024, at 23:59.. Unfortunately, we will
NOT accept late submissions past the grace period (without a reasonable justification).
1
Problem Description
The focus of the programming assignment is to implement a frequent itemset mining algorithm based
on Apriori method with pruning. Given a transacion database T DB and a minimum support threshold minsup, the algorithm should simulate the Aprirori method with pruning - returning all the candidate
itemsets and the frequent itemsets at each scan of the algorithm.
We will test your code on relatively small transaction databases (maximum 15 transactions of length 10).
Please make sure the runtime of your code does not exceed 10 seconds for such small databases.
You will not get any credit if your code does not work.
Input Format: The input will be a plain text file with a transaction database, with each line corresponding
to a transaction composed of a string of letters. Each letter in a transaction corresponds to an item. For
example, the transaction database Test-1.txt is as following:
ACD
BCE
ABCE
BE
Your code will take two inputs:
1. Path to a plain text file pointing to the transaction database; and
2. An integer, the minimum support.
2
Output Format: Your code will implement a function called apriori based on Apriori algorithm with pruning. It will return a 3-level nested dictionary.
Figure 1: Simulation of Test-1.txt
Figure 1 shows the simulation of the Apriori algorithm with pruning for an example. The expected
output (3-level nested dictionary to be returned from the apriori function of your code) is shown in Figure
2.
Output dictionary structure
Let’s consider the 3 levels of the dictionary as outer, middle, and inner levels. The keys of the outer
level will denote the scans (or iterations) of the algorithm. For example, in Figure 1, the algorithm terminates after 3 scans and so in the dictionary of Figure 2, we have 3 elements in the outer dictionary, where the
keys of these 3 elements are integers 1, 2, and 3 denoting the first, second and third scans of the algorithm,
respectively. The scan numbers must start from 1 and should of integer data type.
Value of each scan no.(i.e., each key in the outer layer) is a dictionary, which are the middle layer dictionaries. In Figure 1, the algorithm generates the candidate itemsets and the frequent itemsets in each scan.
So each middle dictionary will have two elements - the key c denoting the candidate itemsets and the key f
denoting the frequent itemsets. The data type of keys c and f should be string.
Value for the keys c and f will be dictionaries - denoting the candidate itemsets and the frequent itemsets
of the corresponding scan. The keys of these dictionaries will be of string data type denoting the itemsets.
The values will be of integer data type denoting the support of the associated itemset.
3
Figure 2: Expected output for Test-1.txt
4
Notes
1. Pruning: While creating the candidate itemsets at every scan, you are supposed to apply pruning.
For example, in Figure 1, at the 2nd scan, merging AC and BC can generate the candidate ABC for
the 3rd scan, but as a subset AB of ABC is absent in the frequent set F2, ABC is pruned and not
included in the candidate set C3. Similarly, the ABC is absent in the corresponding inner dictionary
of Figure 2.
2. Sorting: The alphabets in the strings of the keys of the inner dictionaries should be alphabetically
sorted. For example, BCE should not be any of BEC, CBE, CEB, ECB, EBC.
3. Filename: The submitted file should be named homework5.py, otherwise Gradescope will generate an
error.
4. Terminating: If the frequent itemsets of a scan has only one itemset, the algorithm will terminate
and no further scan will be done. For example, in Figure 1, F3 has only one itemset BCE, so the 4th
scan was not performed.
Also, if the candidate itemsets of a scan is empty, that scan will be discarded and won’t be included in
the output. For example, let’s assume for some input, the frequent itemsets F2 obtained at 2nd scan
are AC, BC. So the candidate itemsets C3 for the 3rd scan will be empty (ABC won’t be in C3 as AB
is absent in F2 and so ABC will be pruned). In this case, the output will not include the 3rd scan as
both C3 and F3 are empty.
5. Error: If you get an error from the autograder that says the code could not be executed properly and
suggests contacting the course staff, please first check carefully if your code is running into an infinite
loop. An infinite loop is the most likely cause of this error.
What you have to submit
You need to submit a Python file named homework5.py. A starter code is posted on Canvas. Implement
the code to compute the required output. You can add as many functions in your code as you need. Your
code should be implemented in Python 3 and do NOT add any third-party packages in your code; you can
use Python’s built-in packages.
Your code must include a function named apriori which takes following two inputs:
1. Transaction database (filename in the starter code): path to a plain text file with the sequence database
as shown in the example above. Each line will have a transaction. Note that there will be an empty
line at the end of the file.
2. Minimum support (minsup in the starter code): an integer indicating the minimum support for the
frequent itemset mining.
A call to the function will be like:
apriori("hw5 sample input 1.txt", 2)
Additional Guidelines
The assignment needs you to both understand algorithms for frequent itemset mining, in particular Apriori
with pruning, as well as being able to implement the algorithm in Python. Here are some guidelines to
consider for the homework:
• Please start early. It is less likely you will be able to do a satisfactory job if you start late.
• It is a good idea to make early progress on the assignment, so you can assess how long it will take: (a)
start working on the assignment as soon as it is posted. Within the first week, you should have a sense
of the parts that will be easier and parts that will need extra effort from you; (b) Solve an example
5
(partly) by hand as a warm-up to get comfortable with the steps that you will have to code. For the
warm-up, you can use the two sample test cases provided on Canvas named hw5 sample input 1.txt and
hw5 sample input 2.txt.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp
















 

掃一掃在手機打開當前頁
  • 上一篇:COMP1117B代做、代寫Python編程設計
  • 下一篇:COMP1721代寫、代做java編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲欧美偷拍另类a∨色屁股| 亚洲图片自拍偷拍| 精品久久久久一区| 韩国成人福利片在线播放| 91麻豆免费视频| 欧美xxxxx牲另类人与| 国内外精品视频| 99久久99久久精品免费观看| 欧美va亚洲va在线观看蝴蝶网| 日韩精品一区二区三区中文精品| 一区二区日韩av| 色婷婷精品久久二区二区蜜臀av| 国产99久久久精品| 精品久久一区二区| 99久久免费国产| 一区二区三区精品在线| 日本道色综合久久| 日日摸夜夜添夜夜添亚洲女人| 一区二区三区久久| 一本一本久久a久久精品综合麻豆| 2021久久国产精品不只是精品| 国产成人综合亚洲91猫咪| 欧美日韩在线精品一区二区三区激情| 欧美综合一区二区| 亚洲一区二区三区中文字幕在线| 一本久道中文字幕精品亚洲嫩| 国产三级久久久| 欧美日韩国产高清一区二区三区 | 91精品一区二区三区久久久久久| 日av在线不卡| 亚洲一区二区三区小说| 91精品国产欧美一区二区成人| 岛国一区二区在线观看| 狠狠色丁香婷婷综合久久片| 亚洲福中文字幕伊人影院| 国产亚洲一区字幕| 中文字幕av一区 二区| 精品久久久久一区| 国产日韩欧美一区二区三区综合| 国产亚洲一二三区| 国产精品美日韩| 亚洲视频一区二区免费在线观看| 久久精品人人做| 国产精品久久三区| 国产精品天干天干在线综合| 久久亚洲私人国产精品va媚药| 精品福利在线导航| 91精品国产综合久久久久久漫画| 亚洲人成在线观看一区二区| 久久精品无码一区二区三区| 欧美videos大乳护士334| 精品国产免费人成在线观看| 欧美欧美欧美欧美首页| 精品久久久久久久一区二区蜜臀| 国产亚洲美州欧州综合国| 日本一区二区视频在线| 亚洲丝袜制服诱惑| 中文字幕一区二区三区四区不卡 | 白白色亚洲国产精品| 国产91富婆露脸刺激对白| 国产精品亚洲第一| 日本精品裸体写真集在线观看| 日韩免费视频一区| 亚洲1区2区3区视频| 韩国一区二区视频| 东方aⅴ免费观看久久av| 欧美电影一区二区| 一区二区三区高清在线| 理论电影国产精品| 91香蕉视频在线| 91精品婷婷国产综合久久| 久久久夜色精品亚洲| 亚洲综合免费观看高清在线观看| 亚洲123区在线观看| 国产精品资源站在线| 韩国欧美国产一区| 日韩丝袜情趣美女图片| 亚洲欧美日韩小说| 成人蜜臀av电影| 国产精品久久二区二区| 国产乱淫av一区二区三区| 91精品国产91综合久久蜜臀| 自拍偷拍国产亚洲| 成人91在线观看| 国产精品久久夜| 国产精品资源网| 中文字幕 久热精品 视频在线| 三级不卡在线观看| 欧美日韩另类国产亚洲欧美一级| 综合婷婷亚洲小说| 99国产精品国产精品毛片| 亚洲特级片在线| 日本久久一区二区三区| 国产目拍亚洲精品99久久精品| 懂色中文一区二区在线播放| 一区二区三区精品| 日韩视频一区二区三区| 丰满少妇在线播放bd日韩电影| 亚洲免费观看高清完整| 国产精品久久久久毛片软件| 日韩视频一区二区三区在线播放| 一区二区三区不卡视频| 亚洲精品成a人| 久久久www免费人成精品| www.欧美.com| 国产激情精品久久久第一区二区 | 人人精品人人爱| 国产精品成人网| 精品国产成人在线影院| 99久久er热在这里只有精品15| 毛片不卡一区二区| 国产麻豆视频一区| 香港成人在线视频| 久久亚区不卡日本| 日韩欧美在线1卡| 日韩精品一区二区三区中文精品| 色婷婷综合在线| 97精品国产97久久久久久久久久久久 | 亚洲福利视频导航| 国产精品女同一区二区三区| 久久久亚洲精华液精华液精华液| 精品少妇一区二区三区在线播放| 91丨porny丨国产| 国产精品一区二区免费不卡| 日韩电影免费一区| 亚洲高清视频的网址| 视频精品一区二区| 视频一区二区中文字幕| 午夜精品久久久久久不卡8050| 久久精品夜色噜噜亚洲aⅴ| 久久久久久免费| 欧美成人猛片aaaaaaa| 欧美日韩电影在线| 国产区在线观看成人精品 | 欧美激情一区二区三区不卡| 国产婷婷一区二区| 亚洲欧美另类久久久精品2019| 国产精品的网站| 中文字幕亚洲在| 九九国产精品视频| 日本韩国精品一区二区在线观看| 欧美日韩成人在线| 91麻豆精品国产91久久久久| 精品国产成人系列| 国产精品无遮挡| 日本vs亚洲vs韩国一区三区二区 | 丁香另类激情小说| 91社区在线播放| 91精品免费在线| 一区二区三区国产精华| 免费久久99精品国产| kk眼镜猥琐国模调教系列一区二区| 色噜噜夜夜夜综合网| 欧美日本一区二区| 亚洲欧美日韩国产手机在线| 日韩国产精品久久久久久亚洲| 97久久久精品综合88久久| 欧美一区二区在线观看| 一二三四区精品视频| 成人av在线电影| 欧美videos大乳护士334| 亚洲激情图片qvod| 99国内精品久久| 中文久久乱码一区二区| 韩国精品主播一区二区在线观看| 69久久99精品久久久久婷婷 | 久久国产精品色婷婷| 欧美精品一区二区久久婷婷| 九九**精品视频免费播放| 日韩你懂的在线播放| 高清不卡在线观看| 国产偷国产偷精品高清尤物| 精品午夜一区二区三区在线观看| 欧美激情一区二区三区四区| 不卡视频在线观看| 一区二区三区中文在线观看| 91麻豆精品国产91久久久 | 国产成人鲁色资源国产91色综| 精品国产成人在线影院| 波波电影院一区二区三区| 视频在线观看一区二区三区| 久久只精品国产| 欧美日韩免费一区二区三区| 丁香婷婷综合激情五月色| 亚洲色图第一区| 久久综合色一综合色88| 欧美日韩成人高清| 色婷婷久久久亚洲一区二区三区| 不卡的av在线| 成人一道本在线| 国产美女精品人人做人人爽| 麻豆一区二区99久久久久| 日韩综合一区二区| 日韩av午夜在线观看| 亚洲国产综合91精品麻豆| 精品久久99ma| 91精品国产91久久久久久最新毛片 | 日韩欧美黄色影院| 日韩欧美一区在线观看| 91精品婷婷国产综合久久性色|