合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        CS 6347代做、MATLAB程序設計代寫

        時間:2024-04-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Problem Set 4
        CS 63**
        Due: 4/25/2024 by 11:59pm
        Note: all answers should be accompanied by explanations for full credit. Late homeworks
        cannot be accepted. All submitted code MUST compile/run.
        Problem 1: Expectation Maximization for Colorings (40 pts)
        For this problem, we will use the same factorization as we have in past assignments. As on the
        previous assignment, the weights will now be considered parameters of the model that need to be
        learned from samples.
        Suppose that some of the vertices, L ⊆ V , are latent variables in the model. Given m samples
        of the observed variables in V \ L, what is the log-likelihood as a function of the weights? Perform
        MLE using the EM algorithm. Your solution should be written as a MATLAB function that takes
        as input an n × n matrix A corresponding to the adjacency matrix of a graph G, an n-dimensional
        binary vector L whose non-zero entries correspond to the latent variables, and samples which is an
        n × m k-ary matrix where samplesi,t corresponds to observed color for vertex i in the t
        th sample
        (you should discard any inputs related to the latent variables). The output should be the vector of
        weights w corresponding to the MLE parameters for each color from the EM algorithm. Note that
        you should use belief propagation to approximate the counting problem in the E-step.
        function w = colorem(A, L, samples)
        Problem 2: EM for Bayesian Networks (60pts)
        For this problem, you will use the house-votes-84.data data set provided with this problem set.
        Each row of the provided data file corresponds to a single observation of a voting record for a
        congressperson: the first entry is party affiliation and the remaining entries correspond to votes on
        different legislation with question marks denoting missing data.
        1. Using the first three features and the first 300 data observations only, fit a Bayesian network
        to this data using the EM algorithm for each of the eight possible complete DAGs over three
        variables.
        2. Do different runs of the EM algorithm produce different models?
        3. Evaluate your eight models, on the data that was not used for training, for the task of
        predicting party affiliation given the values of the other two features. Is the prediction highly

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp













         

        掃一掃在手機打開當前頁
      1. 上一篇:COMP1047代做、代寫Java/Python程序語言
      2. 下一篇:代寫ECS 116、代做SQL設計編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 久久亚洲一区二区| 一区二区三区四区在线观看视频 | 日韩一区二区在线视频| 国内精品一区二区三区最新| 久久久久女教师免费一区| 国产精品美女一区二区三区| 无码人妻精品一区二区三区99仓本| 精品人妻一区二区三区四区| 无码AV天堂一区二区三区| 久99精品视频在线观看婷亚洲片国产一区一级在线 | 蜜桃视频一区二区| 日韩最新视频一区二区三| 老熟妇仑乱视频一区二区| 综合久久一区二区三区 | 国产精品亚洲一区二区麻豆| 无码少妇一区二区性色AV| 成人日韩熟女高清视频一区| jazzjazz国产精品一区二区| 无码毛片一区二区三区中文字幕 | 制服丝袜一区二区三区| 一区二区免费电影| 国产精品区AV一区二区| 久久精品国产一区二区| 久久久久无码国产精品一区| 在线观看国产区亚洲一区成人| 国产精品第一区第27页| 精品一区二区无码AV| 精品人妻一区二区三区毛片| 国产精久久一区二区三区 | 亚洲变态另类一区二区三区 | 美女福利视频一区二区| 精品在线一区二区| 日韩人妻无码一区二区三区| 国产一区在线视频| 久久久精品人妻一区二区三区| 亚洲无删减国产精品一区| 国产福利91精品一区二区三区 | 99精品国产高清一区二区三区| 国产一区二区三区高清视频| 国产精品毛片VA一区二区三区| 日韩爆乳一区二区无码|