合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        CS 6347代做、MATLAB程序設計代寫

        時間:2024-04-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Problem Set 4
        CS 63**
        Due: 4/25/2024 by 11:59pm
        Note: all answers should be accompanied by explanations for full credit. Late homeworks
        cannot be accepted. All submitted code MUST compile/run.
        Problem 1: Expectation Maximization for Colorings (40 pts)
        For this problem, we will use the same factorization as we have in past assignments. As on the
        previous assignment, the weights will now be considered parameters of the model that need to be
        learned from samples.
        Suppose that some of the vertices, L ⊆ V , are latent variables in the model. Given m samples
        of the observed variables in V \ L, what is the log-likelihood as a function of the weights? Perform
        MLE using the EM algorithm. Your solution should be written as a MATLAB function that takes
        as input an n × n matrix A corresponding to the adjacency matrix of a graph G, an n-dimensional
        binary vector L whose non-zero entries correspond to the latent variables, and samples which is an
        n × m k-ary matrix where samplesi,t corresponds to observed color for vertex i in the t
        th sample
        (you should discard any inputs related to the latent variables). The output should be the vector of
        weights w corresponding to the MLE parameters for each color from the EM algorithm. Note that
        you should use belief propagation to approximate the counting problem in the E-step.
        function w = colorem(A, L, samples)
        Problem 2: EM for Bayesian Networks (60pts)
        For this problem, you will use the house-votes-84.data data set provided with this problem set.
        Each row of the provided data file corresponds to a single observation of a voting record for a
        congressperson: the first entry is party affiliation and the remaining entries correspond to votes on
        different legislation with question marks denoting missing data.
        1. Using the first three features and the first 300 data observations only, fit a Bayesian network
        to this data using the EM algorithm for each of the eight possible complete DAGs over three
        variables.
        2. Do different runs of the EM algorithm produce different models?
        3. Evaluate your eight models, on the data that was not used for training, for the task of
        predicting party affiliation given the values of the other two features. Is the prediction highly

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp













         

        掃一掃在手機打開當前頁
      1. 上一篇:COMP1047代做、代寫Java/Python程序語言
      2. 下一篇:代寫ECS 116、代做SQL設計編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 成人国产精品一区二区网站| 亚洲一区二区中文| 国产精品一区二区三区久久| 中文字幕精品亚洲无线码一区| 亚洲国产激情在线一区| 国产午夜精品一区二区| 国产成人一区二区精品非洲| 一区二区视频在线播放| 中文人妻无码一区二区三区| 一区二区三区中文字幕| 国产成人一区二区在线不卡| 亚洲国产系列一区二区三区 | 亚洲av日韩综合一区在线观看| 国产乱码精品一区三上| 亚洲av成人一区二区三区观看在线 | 国产内射在线激情一区| 中文字幕一区二区三| 无码毛片一区二区三区视频免费播放| 无码中文字幕人妻在线一区二区三区| 日本免费一区二区在线观看| 亚洲午夜精品一区二区| 无码人妻精品一区二区| 亚洲国产精品一区二区久久hs| 久久精品国产一区二区| 久久国产精品免费一区| 亚洲中文字幕无码一区| 无码日韩精品一区二区三区免费 | 亚洲AV无码一区二区三区电影| 亚洲一区二区三区国产精品无码| 美女毛片一区二区三区四区| 91午夜精品亚洲一区二区三区| 精品一区二区三区在线播放视频| 精品动漫一区二区无遮挡| 国产午夜精品片一区二区三区| 国产精品一区二区毛卡片| 国产精品亚洲一区二区三区 | 国产高清在线精品一区二区三区 | 夜精品a一区二区三区| 国产日韩一区二区三区在线播放| 无码一区二区三区在线| 日韩一区二区精品观看|