99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 2XC3、代做 Python 設計編程

時間:2024-04-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Computer Science 2XC3: Final Project
This project will include a final report and your code. Your final report will have the following. You will
be submitting .py (NOT *.ipynb) files for this final project.
• Title page
• Table of Content
• Table of Figures
• An executive summary highlighting some of the main takeaways of your experiments/analysis
• An appendix explaining to the TA how to navigate your code.
For each experiment, include a clear section in your lab report which pertains to that experiment. The report should look professional and readable.
PLEASE NOTE: This is the complete Part I and II. Complete Parts 1 – 5 in group. Part 6 needs to be completed individual. Please refer to the plagiarism policy in Syllabus.
Part 1 : Single source shortest path algorithms
Part 1.1: In this part you will implement variation of Dijkstra’s algorithm. It is a popular shortest path algorithm where the current known shortest path to each node is updated once new path is identified. This updating is called relaxing and in a graph with 𝑛 nodes it can occur at most 𝑛 − 1 times. In this part implement a function dijkstra (graph, source, k) which takes the graph and source as an input and where each node can be relaxed on only k times where, 0 < 𝑘 < Ү**; − 1. This function returns a distance and path dictionary which maps a node (which is an integer) to the distance and the path (sequence of nodes).
Part 1.2: Consider the same restriction as previous and implement a variation of Bellman Ford’s algorithm. This means implement a function bellman_ford(graph, source, k) which take the graph and source as an input and finds the path where each node can be relaxed only k times, where, 0 < 𝑘 < Ү**; − 1. This function also returns a distance and path dictionary which maps a node (which is an integer) to the distance and the path (sequence of nodes).
Part 1.3: Design an experiment to analyze the performance of functions written in Part 1.1 and 1.2. You should consider factors like graph size, graph. density and value of k, that impact the algorithm performance in terms of its accuracy, time and space complexity.
Part 2: All-pair shortest path algorithm
Dijkstra’s and Bellman Ford’s are single source shortest path algorithms. However, many times we are faced with problems that require us to solve shortest path between all pairs. This means that the algorithm needs to find the shortest path from every possible source to every possible destination. For every pair of vertices u and v, we want to compute shortest path 𝑑𝑖w**4;w**5;𝑎𝑛𝑐Ү**;(w**6;, w**7;) and the second-to-last vertex on the shortest path w**1;w**3;Ү**;w**7;𝑖w**0;w**6;w**4;(w**6;, w**7;). How would you design an all-pair shortest path algorithm for both positive edge weights and negative edge weights? Implement a function that can address this. Dijkstra has complexity Ɵ(𝐸 + 𝑉𝑙w**0;𝑔𝑉), or Ɵ (𝑉2) if the graph is dense and Bellman-Ford has complexity Ɵ (𝑉𝐸) , or Ɵ(𝑉3) if the graph is dense. Knowing this, what would you conclude the complexity of your two algorithms to be for dense graphs? Explain your conclusion in your report. You do not need to verify this empirically.
      
Part 3: A* algorithm
In this part, you will analyze and experiment with a modification of Dijkstra’s algorithm called the A* (we will cover this algorithm in next lecture, but you are free to do your own research if you want to get started on it). The algorithm essentially, is an “informed” search algorithm or “best-first search”, and is helpful to find best path between two given nodes. Best path can be defined by shortest path, best time, or least cost. The most important feature of A* is a heuristic function that can control it’s behavior.
Part 3.1: Write a function A_Star (graph, source, destination, heuristic) which takes in a directed weighted graph, a sources node, a destination node , and a heuristic “function”. Assume h is a dictionary which takes in a node (an integer), and returns a float. Your method should return a 2-tuple where the first element is a predecessor dictionary, and the second element is the shortest path the algorithm determines from source to destination. This implementation should be using priority queue.
Part 3.2: In your report explain the following:
• What issues with Dijkstra’s algorithm is A* trying to address?
• How would you empirically test Dijkstra’s vs A*?
• If you generated an arbitrary heuristic function (like randomly generating weights), how would
Dijkstra’s algorithm compare to A*?
• What applications would you use A* instead of Dijkstra’s?
Part 4: Compare Shortest Path Algorithms
In this part, you will compare the performance of Dijkstra’s and A* algorithm. While generating random graphs can give some insights about how algorithms might be performing, not all algorithms can be assessed using randomly generated graphs, especially for A* algorithm where heuristic function is important. In this part you will compare the performance of the two algorithms on a real-world data set. Enclosed are a set of data files that contain data on London Subway system. The data describes the subway network with about 300 stations, and the lines represent the connections between them. Represent each station as a node in a graph, and the edge between stations should exists if two stations are connected. To find weights of different edges, you can use latitude and longitude for each station to find the distance travelled between the two stations This distance can serve as the weight for a given edge. Finally, to compute the heuristic function, you can use the physical direct distance (NOT the driving distance) between the source and a given station. Therefore, you can create a hashmap or a function, which serves as a heuristic function for A*, takes the input as a given station and returns the distance between source and the given station.
Once you have generated the weighted graph and the heuristic function, use it as an input to both A* and Dijkstra’s algorithm to compare their performance. It might be useful to check all pairs shortest paths, and compute the time taken by each algorithm for all combination of stations. Using the experiment design, answer the following questions:
• When does A* outperform Dijkstra? When are they comparable? Explain your observation why you might be seeing these results.
• What do you observe about stations which are 1) on the same lines, 2) on the adjacent lines, and 3) on the line which require several transfers?
• Using the “line” information provided in the dataset, compute how many lines the shortest path uses in your results/discussion?
    
 Figure 1: London Subway Map
Part 5: Organize your code as per UML diagram
Organize you code as per the below Unified Modelling Language (UML) diagram in Figure 2. Furthermore, consider the points listed below and discuss these points in a section labelled Part 4 in your report (where appropriate).
• Instead of re-writing A* algorithm for this part, treat the class from UML as an “adapter”.
• Discuss what design principles and patterns are being used in the diagram.
• The UML is limited in the sense that graph nodes are represented by the integers. How would you
alter the UML diagram to accommodate various needs such as nodes being represented Strings or carrying more information than their names.? Explain how you would change the design in Figure 2 to be robust to these potential changes.
• Discuss what other types of graphs we could have implement “Graph”. What other implementations exist?
 
 Figure 2: UML Diagram
Part 6: Unknown Algorithm (To work on Individually)
In the code posted with this document, you will find a w**6;𝑛𝑘𝑛w**0;w**8;𝑛() function. It takes a graph as input. Do some reverse engineering. Try to figure out what exactly this function is accomplishing. You should explore the possibility of testing it on graphs with negative edge weights (create some small graphs manually for this). Determine the complexity of this function by running some experiments as well as inspecting the code. Given what this code does, is the complexity surprising? Why or why not?
 Grade Breakup:
   Part 1: Single source shortest path algorithms Part 2: All-pair shortest path algorithm
Part 3: A* algorithm
Part 4: Compare Shortest Path Algorithms
Part 5: Organize your code as per UML diagram Part 6: Unknown Algorithm
Group 25 Group 15 Group 20 Group 30 Group 10
Individual 50
Part
Submission Type
Points
                     
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















 

掃一掃在手機打開當前頁
  • 上一篇:代做CSE 470、djava/Python 編程
  • 下一篇:CS 2550代做、代寫SQL設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产婷婷一区二区| 色久优优欧美色久优优| 国精产品一区一区三区mba视频| 欧美日韩亚洲综合在线 | 欧美一级一级性生活免费录像| 日本欧美在线看| 精品国产百合女同互慰| 成人午夜激情片| 亚洲成精国产精品女| 欧美一区二区三区视频免费 | 欧美成人免费网站| 成人国产精品免费| 水野朝阳av一区二区三区| 精品国产免费视频| 99久久精品费精品国产一区二区| 亚洲亚洲人成综合网络| 日韩欧美视频一区| 99精品视频一区二区三区| 天天亚洲美女在线视频| 久久午夜电影网| 欧美性猛交xxxxxx富婆| 国产成人精品一区二区三区四区| 亚洲免费在线视频| 久久网站热最新地址| 欧美日韩一区二区三区高清| 国产69精品久久久久毛片| 视频在线观看国产精品| 亚洲女同一区二区| 中文字幕乱码久久午夜不卡 | 成人欧美一区二区三区黑人麻豆 | 久久品道一品道久久精品| 色综合咪咪久久| 国产精品2024| 久久精品国产77777蜜臀| 亚洲精品视频在线观看网站| 久久久www免费人成精品| 欧美日韩高清不卡| 91福利在线免费观看| eeuss鲁一区二区三区| 91玉足脚交白嫩脚丫在线播放| 免费的成人av| 欧美人妇做爰xxxⅹ性高电影| 色噜噜偷拍精品综合在线| 色综合天天综合网天天狠天天 | 亚洲成av人片一区二区| 国产高清不卡二三区| 另类中文字幕网| 亚洲午夜久久久久久久久电影院| 亚洲成av人影院| √…a在线天堂一区| 欧美偷拍一区二区| 91在线观看成人| av网站一区二区三区| 国产成人夜色高潮福利影视| 裸体一区二区三区| 久久精品国产免费| 加勒比av一区二区| 国产在线精品不卡| 国产毛片精品一区| 成人三级在线视频| 色综合av在线| 在线一区二区三区做爰视频网站| 成人亚洲一区二区一| 成人一级片网址| 91日韩精品一区| 欧美三区在线观看| 欧美放荡的少妇| 欧美tk—视频vk| 在线观看一区二区视频| 国产精品视频一二| 亚洲成人精品一区| 成人h动漫精品| 精品福利二区三区| 美女网站色91| 欧美挠脚心视频网站| 亚洲精品成人悠悠色影视| 国产精品初高中害羞小美女文| 美女久久久精品| 日韩av电影一区| 九九视频精品免费| 成人一区二区三区视频在线观看 | 天天色 色综合| 天堂资源在线中文精品| 日本欧美一区二区| 成人做爰69片免费看网站| 色综合久久天天| 欧美变态tickling挠脚心| 国产精品久久久久久亚洲毛片| 亚洲人成精品久久久久| 日本中文在线一区| aaa亚洲精品| 欧美成人激情免费网| 中文字幕佐山爱一区二区免费| 日本中文字幕一区二区视频| 99精品欧美一区二区三区综合在线| 5月丁香婷婷综合| 最新欧美精品一区二区三区| 毛片av中文字幕一区二区| 色呦呦日韩精品| 亚洲精品一区二区三区在线观看| 亚洲精品v日韩精品| 国产福利91精品一区二区三区| 欧美日韩国产精品成人| 日韩理论片中文av| 国产成人av福利| 欧美精品一区二区三区四区 | 国产一区 二区 三区一级| 欧美亚洲综合色| 最新热久久免费视频| 国产精品99久| 欧美精品一区视频| 青青草97国产精品免费观看无弹窗版| 91在线国产福利| 成人欧美一区二区三区1314| 国产精品12区| 久久嫩草精品久久久精品一| 亚洲国产欧美日韩另类综合 | 日韩精品中文字幕一区二区三区| 中文字幕中文在线不卡住| 美国三级日本三级久久99 | 精品日韩在线一区| 五月婷婷久久丁香| 91论坛在线播放| ...xxx性欧美| 95精品视频在线| 中文乱码免费一区二区| 丁香婷婷综合五月| 国产精品毛片无遮挡高清| 国产精品影视天天线| 久久久.com| 国产传媒一区在线| 中文字幕免费一区| 91在线看国产| 午夜伦欧美伦电影理论片| 欧美久久久久久蜜桃| 日韩国产一区二| 7777精品伊人久久久大香线蕉经典版下载 | 欧美一区二区精美| 免费黄网站欧美| 久久一区二区视频| 岛国精品在线观看| 亚洲视频1区2区| 欧美日韩国产bt| 狠狠色丁香久久婷婷综| 国产蜜臀av在线一区二区三区 | 国产伦精品一区二区三区在线观看 | www.日本不卡| 亚洲乱码国产乱码精品精的特点| 99久久婷婷国产综合精品电影 | 99久久伊人久久99| 亚洲国产精品久久人人爱蜜臀| 欧美日韩国产片| 国产一区二区在线看| 中文字幕一区二区三区在线不卡| 91丨porny丨首页| 亚洲二区在线观看| 久久免费看少妇高潮| 成人激情小说网站| 日本美女一区二区三区| 国产精品久久午夜夜伦鲁鲁| 欧美午夜电影网| 国产乱码精品一区二区三区五月婷 | 欧美va亚洲va香蕉在线| 不卡av在线网| 麻豆一区二区99久久久久| 国产精品麻豆网站| 制服丝袜激情欧洲亚洲| 不卡一二三区首页| 日本vs亚洲vs韩国一区三区二区| 国产精品伦理一区二区| 欧美一区二区黄色| 91网站黄www| 国产精品一品视频| 青娱乐精品视频| 亚洲永久精品国产| 国产日韩欧美一区二区三区综合| 欧美日韩一二三区| av高清久久久| 国产精品自拍av| 蜜臀av性久久久久蜜臀av麻豆 | 偷拍一区二区三区| 中文字幕一区二区三中文字幕| 日韩欧美亚洲国产另类 | 亚洲男人天堂一区| 国产日产欧产精品推荐色| 欧美一区二区视频在线观看2020 | 日韩欧美亚洲国产另类| 欧美探花视频资源| 99视频有精品| 白白色 亚洲乱淫| 国产不卡一区视频| 国产成人综合网| 国产福利精品导航| 国产成人av在线影院| 国产二区国产一区在线观看| 久久99精品久久只有精品| 久久精品国产精品亚洲综合| 日韩成人伦理电影在线观看| 亚洲免费观看高清| 亚洲丝袜自拍清纯另类|