99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSC325、代做Java,C++設計程序

時間:2024-04-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COURSEWORK 2 Natural Language Processing
CS-265/CSC**5 Ar@ficial Intelligence
Released: 22 March 2024
Due: Thursday 29 April 2024, 11am. This is a hard deadline and set in rela-on to other submission
deadlines.
Read and think through the whole coursework before star5ng to program. Review the NLP lectures and
lab. See it as engineering a language mechanism, which you can experiment with and develop. The focus
is on how features are used at different points in the grammar and lexicon to control well-formedness.
Follow the instruc5ons fully and accurately. Marks are taken off for wrong or missing answers.
Address the following in the coursework
1. Write a DCG which parses input sentences and outputs a parse.
2. The DCG must parse sentences with the following features. The features a, b, c, d, and j are
related to the lab. The others - e, g, h, k, and l - are addi5ons that interact with other parts of the
grammar and are explained further below.
a. Transi5ve and intransi5ve verbs
b. Common nouns
c. Determiners (e.g., ``a'', ``the'', and ``two'')
d. Subject/object singular/plural pronouns (e.g., ``he'', ``him'', ``I", ``we'')
e. Pronouns with gramma5cal person (e.g., ``I'', ``you'', ``she'')
f. Singular/plural nouns (e.g., chair/chairs)
g. Adjec5ves and adjec5val phrases
h. Preposi5ons and preposi5onal phrases
i. Subject-verb agreement for person, number, and animacy
j. Determiner-common noun number agreement
k. Animacy agreement between the subject and verb
l. Passive and ac5ve sentences
3. The DCG should separate grammar and lexicon. The lexicon must be included in your code and
include all the words and word forms in the lexicon below or those you should add to the
lexicon.
4. The sample outputs (below) should be carefully studied and emulated by the parser. It must be
emphasised that the outputs are phrase structures of the input sentence; it is not sufficient
just to recognise if a sentence is well-formed according to the grammar. The categories, e.g.,
nbar, jp, adj, n, as well as the parsing structure, e.g., nbar(jp(adj(tall), jp(adj(young), n(men)))),
should appear in the output. Output that misses categories and parsing structures will be
marked down. While there may be different ways to write the grammar, the input and output
must be precise and fixed, as the results will be automa5cally checked. If the output does not
match the intended output, you can be marked down on that output.
Demonstra@on of Work
To demonstrate that your code works as intended, your code should correctly give the parse trees for the
gramma5cal sentences in the list of test sentences (below) and fail for the ungramma5cal sentences. In
the list of test sentences below, an ungramma5cal sentence is indicated with a * next to it, for example,
"*the men sees the apples" is ungramma5cal. We are not concerned with capitalisa5on or punctua5on.
For each sentence in the list of test sentences, query your parser; if the sentence is ungramma5cal, the
output should be false/fails; if the sentence is gramma5cal, the outputs should be the correct parse. An
excep5on in your program means there is a problem and no marks are given.
Generally, if issues or problems arise, report these in a discussion sec5on.
Your grammar should at least parse and provide the phrase structure for every sentence in the test
sentences (below). As well, for evalua5on, there will be unseen sentences that your grammar should
parse and generate the phrase structure or fail to parse, given the instruc5ons and the lexicon.
There are extensions that you are to make to the lexicon - read the instruc5ons carefully all the way
through to fully understand what needs to be done.
Submission
To submit your coursework, it should be one file with your grammar. The file name should a Prolog file in
the form of:
YOUR-STUDENT-NUMBER_AI_NLP_2024.pl
The files will be submiced on TurnItIn (the link to be provided). The grammars will be automa5cally run
and unit tested; that is, we will run your grammar against all the seen test sentences as well as unseen
sentences that your grammar should parse or fail to parse given the instruc5ons and the lexicon. This
also means that if you have anything in your file which is not Prolog code (comments, discussion,
examples, etc), then it should appear commented out.
Discussion
If you are inclined to engage with further discussion, issues, work on other examples, make observa5ons,
add further extensions, or even other languages, you are welcome to share it in an email document sent
to me (Adam Wyner). There is no addi5onal mark per se. You will get remarks in return from the
lecturer. Make sure you indicate your student number and name on your document.
Marking Scheme
The overall mark for the coursework is 15 marks. 60% of these marks are for correct output of parsed
sentences (seen and unseen data) and 40% of these marks are for a well-formed grammar. Incorrect
output (wholly or par5ally) are deducted propor5onately. A well-formed grammar uses DCGs (not
difference lists), uses the full lexicon with addi5ons (see below), uses the indicated gramma5cal
categories and phrasal units, and reduces redundancy or complexity as much as is feasible (see below for
further notes).
Test Sentences
* means the grammar should fail on these sentences. Some of the sentences may seem gramma5cal
given other interpreta5ons, which is discussed further below. Accept the gramma5cality judgements
given here, though they are open to discussion. Below, there are listed sentences; further below, there
are addi5onal sample input/outputs.
1. the woman sees the apples
2. a woman knows him
3. *two woman hires a man
4. two women hire a man
5. she knows her
6. *she know the man
7. *us see the apple
8. we see the apple
9. i know a short man
10. *he hires they
11. two apples fall
12. the apple falls
13. the apples fall
14. i sleep
15. you sleep
16. she sleeps
17. *he sleep
18. *them sleep
19. *a men sleep
20. *the tall woman sees the red
21. the young tall man knows the old short woman
22. *a man tall knows the short woman
23. a man on a chair sees a woman in a room
24. *a man on a chair sees a woman a room in
25. the tall young woman in a room on the chair in a room in the room sees the red apples under
the chair
26. the man sleeps
27. *the room sleeps
28. *the apple sees the chair
29. *the rooms know the man
30. the apple falls
31. the man falls
**. the man breaks the chairs
33. the chairs are broken
34. the chairs are broken by the man
35. the chair is broken by the men
36. *the chair is broken by the apple
37. the room is hired by the man
38. *the chair broken by the man
39. a man is bicen by the dog
40. *a man is bicen the woman by the dog
41. *the chair falls by the man
42. *a man on a chair sees a woman by her
43. *a man on a chair sees a woman by she
44. *a man on a chair sees a woman by the woman
45. a man on a chair sees a woman on a chair
In addi5on to these 45 sentences, there 15 sample input and parses below that you should use to
develop and test your grammar.
The 60 sentences is the data set that you can use to develop and test your grammar. However, there will
be more in the unseen tes5ng data set, using the same lexicon with the same parameters of the
grammar as described below. If your grammar parses and generates the phrase structure for the seen
examples, it should, assuming you’ve designed the grammar well, also parse and generate the phrase
structure for the unseen sentences.
Modeling the Sample Inputs and Parses
Below, in different sec5ons, you will find sample model inputs and outputs. They highlight the categories
and structures that your grammar should recognise and output their structure. The output in the
examples should be carefully studied and emulated by the grammar. The categories (below), e.g., nbar,
jp, adj, n, byPass, and parsing structures (below), e.g., nbar(jp(adj(tall), jp(adj(young), n(men)))), should
appear correctly in the output. Output that misses categories and parsing structures will be marked
down. The examples also illustrate the predicate that can be called. It is essen5al that you use the form
of this predicate and that your grammar produce these outputs in these forms. Obviously, the task of
your grammar is to take the input and provide the output, so you know the intended target.
Comments and Tips
The focus of the grammar in the coursework is on how features are used to ``guide'' well-formedness of
parses.
Your grammar ought to provide only one parse for each input sentence. Check that it makes sense given
the specifica5on. If there is more than one parse, there is something to revise in your grammar.
In a long parse, you might see .... your parse. This means that the parse is very long and Prolog is
trunca5ng it. If you want to see the full parse, let the lecturer know and a predicate can be circulated on
Canvas.
The length of the parses should be propor5onal to the length of the input sentence. If you have very long
parses for a rela5vely short sentence, then something is wrong with your grammar.
The grammar you are wri5ng should recognize and output the parse of the relevant sentences (those in
the seen data and others unseen rela5ve to the lexicon, sample parses, and gramma5cal construc5ons)
and fail on others. If you generate more sentences or provide further examples for parsing, you will
quickly see that there are many odd or ungramma5cal sentences that this grammar recognises. You will
also see that some sentences can be gramma5cal and given a different interpreta5on of some of the
parts of speech, e.g., the by-phrase only appears in the passive in this grammar, but in the meaning of
``alongside'' would be gramma5cal. In this sense, a grammar is a theory which you can develop and
evaluate incrementally with respect to the data. Wri5ng a large scale grammar for a fragment of natural
language must take into account a range of proper5es, e.g. ordering of preposi5onal phrases, alterna5ve
interpreta5ons, seman5c restric5ons, seman5c representa5ons, pragma5cs, etc., which we are not
addressing in this coursework. Going ``hard core'' in the world of computa5onal linguis5c parsing and
seman5c representa5on means facing lots of hard, complex, and very interes5ng issues of natural
language.
During development, you can also visualise the parse trees in SWISH (and probably not in your local SWIProlog installa5on). The predicate for this will be circulated on Canvas.
In general, your grammar file should only include the grammar and lexicon and no further Prolog
direc5ves (those lines that start with :) or predicates not part of the grammar and lexicon, i.e., such as
you might use in SWISH for parse trees.
Notes on Gramma@cal Construc@ons
The notes here which extend the topics found in Lab 6, so take them together.
Nouns (common and pronoun) carry features. This is explicit on pronoun forms (e.g. he/him, I/we),
where have features such as number (singular/plural) and case (nomina5ve/accusa5ve). The
gramma5cal role (subject/object) is related to the case on nouns, where the cases are nomina5ve and
accusa5ve and align respec5vely with subject and object (broadly); that is, case forms of nouns indicate
the role the noun has with respect to the verb.
Phrases and Structure
It is reasonable to have more than one rule for similar phrasal categories, where there is a significant
reason to warrant them. For instance, we have transi5ve verbs (must have an object) and intransi5ve
verbs (cannot have an object); you might have two different VP rules to represent this. Preposi5onal
phrases are op5onal inside Noun Phrases; the byPass preposi5onal phrases are op5onal inside Verb
Phrases. You might have two different NPs for the former, and two different VPs for the lacer. We do not
assume that binary branching is necessary, so a phrase might have more than two cons5tuents (parts)
within it.
s(Tree, [the,man,sleeps], []).
s(np(det(the),nbar(n(man))),vp(v(sleeps)))
s(Tree, [the,woman,sees,the,apples], []).
s(np(det(the),nbar(n(woman))),vp(v(sees),np(det(the),nbar(n(apples)))))
s(Tree, [the,woman,sees,the,apples,in,the,room], []).
s(np(det(the),nbar(n(woman))),vp(v(sees),np(det(the),nbar(n(apples)),pp(prep(in),np(det(the),n
bar(n(room)))))))
Pronouns
Pronouns (e.g. he/him, I/we) have features such as number (singular/plural) and gramma5cal role
(subject/object). The gramma5cal role is related to the case on nouns, that is, forms of nouns that
indicate what role the noun has with respect to the verb. In English, there are three cases - Nomina5ve,
Accusa5ve, and Geni5ve. The last we ignore. Pronouns show this most clearly in English - ``she'' is a
pronoun in the nomina5ve form, while ``her'' is a pronoun in the accusa5ve form. When a pronoun is in
the subject posi5on, it must appear in the nomina5ve form; when a pronoun is in the object posi5on, it
must appear in the accusa5ve form. In addi5on, pronouns have features such as gramma5cal person,
e.g. first person ``i'', second person ``you'', third person ``she''. Gramma5cal person indicates a closer or
more distant rela5onship between the speaker of the sentence and other persons: "I see the apple"
represents the most personal statement (first person); ``You see the apple'' is between the speaker and a
person who is immediately present; and ``He sees the apple'' is the most distant, as it can relate to a
person who is not immediately present or somehow less ``relevant''.
The lexicon shows the features of pronouns number, case, gramma5cal person, and animacy (whether it
is a cogni5ve en5ty).
s(Tree,[she,knows,her],[]).
Tree = s(np(pro(she)), vp(v(knows), np(pro(her)))).
s(Tree,[her,knows,she],[]).
false.
Agreement
Pronouns and noun phrases show several features. A noun phrase (and pronouns in par5cular) must
agree with the verb in several ways, that is, the number, case, person, and animacy features of the noun
phrase must be compa5ble with those features of the verb - this is how the structure of the mechanism
'locks' together. While sentences have subject and object posi5ons in sentences, these are reflected in
the order of arguments rather than some addi5onal feature.
Structures for NPs with Adjec-ves and Preposi-onal Phrases
For our purposes, an adjec5ve such as ``tall'' describes a property of a common noun such a man. The
adjec5ve precedes the noun. For example: ``the tall man sees the woman'' is gramma5cal; ``the man tall
sees the woman'' is ungramma5cal. You can have any number of adjec5ves, for example: ``the tall tall
old man sees the woman''; ``the tall tall old old man sees the woman'', even if a bit odd, we'll accept as
gramma5cal.
For our purposes, a preposi5onal phrase modifies a noun without restric5on, and it is made up of a
preposi5on and a noun phrase. The preposi5on provides informa5on about the rela5ve loca5ons of the
nouns i.e., the noun that is modified and the noun within the preposi5onal phrase. The preposi5onal
phrase follows the noun that it modifies: ``the man in the room sees a woman on a chair''. We see them
as a rela5on between ``man'' and ``room''. You can have any number of preposi5onal phrases, for
example: ``the woman in a room on the chair in a room in the room sees the man''. We could have a
preposi5onal phrase modifying a verb as in ``the woman sleeps in the room'', but do not for this
coursework.
As an adjec5ve or preposi5onal phrase modifies a noun phrase, it can appear with the noun phrase in
either the subject or the object posi5on.
An adjec5ve or preposi5onal phrase is op5onal in the sense that not having them in a sentence results in
a sentence that is s5ll gramma5cal. However, there is a loss of meaning
As a hint about the grammar of adjec5ves and preposi5onal phrases in noun phrases, see the phrase
tree for sample sentences below. They indicate the gramma5cal structure of the categories and phrase
structure for adjec5ves and preposi5onal phrases in noun phrases; though somewhat complicated, it
shows the variety of structures. While the gramma5cal structure of jp and nbar are unfamiliar, we can
take them as given. Use these categories and phrase structures for your grammar. Given such input (and
similar), your parser should produce the same sort of output:
s(Tree, [the, woman, on, two, chairs, in, a, room, sees, two, tall, young, men], []).
Tree = s(np(det(the), nbar(n(woman)), pp(prep(on), np(det(two), nbar(n(chairs)), pp(prep(in),
np(det(a), nbar(n(room))))))), vp(v(sees), np(det(two), nbar(jp(adj(tall), jp(adj(young),
n(men)))))))
s(Tree, [the, woman, in, a, room, sees, two, young, men], []).
s(np(det(the),nbar(n(woman)),pp(prep(in),np(det(a),nbar(n(room))))),vp(v(sees),np(det(two),nb
ar(jp(adj(young),n(men))))))
All this said, there is a difference between ``ordinary'' preposi5onal phrases and a par5cular
preposi5onal phrase that appears in the passive. For our purposes, we will differen5ate them. See
below.
The Passive
Passive and ac5ve sentences are closely related:
the dog bites the woman. (ac5ve)
s(Tree,[the,dog, bites, the, woman],[]).
s(np(det(the),nbar(n(dog))),vp(v(bites),np(det(the),nbar(n(woman)))))
the woman is bicen by the dog. (passive)
s(Tree,[the,woman, is, bicen, by, the, dog],[]).
s(np(det(the),nbar(n(woman))),vp(aux(is),v(bicen),byPrepP(byPrep(by),np(det(the),nbar(n(dog))
))))
The passive is part of a much more widespread and diverse family of gramma5cal construc5ons called
diathesis alterna5ons. In diathesis alterna5ons, the arguments of the verb appear in alterna5ve posi5ons
yet with largely the same meaning. The passive and ac5ve sentences above mean the same thing, but
given in a different way and with some different rhetorical uses. Other examples of diathesis:
Direct-Indirect Object: A woman gives a book to a man; A woman gives a man a book
Causa5ve: The woman broke the chair; the chair was broken
We only consider the passive. While the past tense would be nicest, we have kept to the present tense
(doesn't really macer). There are several characteris5cs of the Passive construc5on in English:
• The posi5ons and case of the noun phrases change: what is the object (accusa5ve) NP in the
ac5ve sentences is the subject (nomina5ve) in the passive; what is the subject (nomina5ve and
'animate doer') NP in the ac5ve is in a par5cular preposi5onal phrase which represents the
'animate doer' of the ac5on.
she hires him.
s(Tree, [she,hires,him], []).
s(np(pro(she)),vp(v(hires),np(pro(him))))
he is hired by her.
s(Tree, [he,is,hired,by,her], []).
s(np(pro(he)),vp(aux(is),v(hired),byPrepP(byPrep(by),np(pro(her)))))
*her hires him.
s(Tree, [her,bites,him], []).
false.
*he is hired by she.
s(Tree, [he,is,hired,by,she], []).
false
• An ``auxiliary'' or ``helper'' verb (a form of ``to be’’ in this lexicon) is introduced in the passive.
Without the auxiliary, it might be read as a nominal, which is another macer.
*the woman bicen by the dog.
s(Tree,[the,woman, bicen, by, the, dog],[]).
false
• While the subject of the verb must be animate in the ac5ve, it need not be in the passive.
s(Tree, [the,woman,breaks,the,chair], []).
s(np(det(the),nbar(n(woman))),vp(v(breaks),np(det(the),nbar(n(chair)))))
s(Tree, [the,apple,breaks,the,chair], []).
false
s(Tree, [the,chair,is,broken,by,the,woman], []).
s(np(det(the),nbar(n(chair))),vp(aux(is),v(broken),byPrepP(byPrep(by),np(det(the),nbar(
n(woman))))))
• The verb in the ac5ve appears in a ``past par5ciple'' form in the passive.
The dog bites the woman.
The woman is bicen by the dog.
s(Tree, [the,woman,is,bites,by,the,dog], []).
false
• The par5cular preposi5onal phrase is op5onal without loss of meaning. This is in contrast with
dropping ``ordinary'' preposi5onal phrases.
The woman is bicen by the dog.
s(Tree,[the,woman,is,bicen],[]).
s(np(det(the),nbar(n(woman))),vp(aux(is),v(bicen)))
• Note the phrase structure. The auxiliary, the passive par5ciple, and the par5cular preposi5onal
phrase all appear together at the same ``level'' in the phrase structure in the VP. This is in
contrast to ordinary preposi5onal phrases which modify noun phrases.
The woman is bicen by the dog.
s(Tree, [the,woman,in,the,room,is,bicen,by,the,dog,in,the,room], []).
s(np(det(the),nbar(n(woman)),pp(prep(in),np(det(the),nbar(n(room))))),vp(aux(is),v(bic
en),byPrepP(byPrep(by),np(det(the),nbar(n(dog)),pp(prep(in),np(det(the),nbar(n(room))
))))))
The Lexicon
The lexicon should include all the following words that appear, where the components of each lexical
entry are as given. This is not the form that your code requires, but is a helpful hint.
The grammar must treat the features in the lexicon.
%%%%%%%%%%%% Lexicon %%%%%%%%%%%%%%
% The lexicon should include all the following words that appear, where the components of each lexical
% entry are as given. For clarity, the lexicon is given in the form that your code would require.
% The grammar must treat the features in the lexicon.
% Note that there are some lexical forms that your grammar would require, but are missing in the lis5ng
below.
%%% Pronouns %%%
% For pronouns, the informa5on appears in the following order: word, gramma5cal category (pronoun),
% number (singular/plural), gramma5cal person (1st, 2nd, or 3rd), and gramma5cal role (subject or
object)
lex(i,pro,singular,1,nom,ani).
lex(you,pro,singular,2,nom,ani).
lex(he,pro,singular,3,nom,ani).
lex(she,pro,singular,3,nom,ani).
lex(it,pro,singular,3,nom,ani).
lex(we,pro,plural,1,nom,ani).
lex(you,pro,plural,2,nom,ani).
lex(they,pro,plural,3,nom,ani).
lex(me,pro,singular,1,acc,ani).
lex(you,pro,singular,2,acc,ani).
lex(him,pro,singular,3,acc,ani).
lex(her,pro,singular,3,acc,ani).
lex(it,pro,singular,3,acc,ani).
lex(us,pro,plural,1,acc,ani).
lex(you,pro,plural,2,acc,ani).
lex(them,pro,plural,3,acc,ani).
%%% Common Nouns %%%
% For common nouns, the informa5on appears in the following order: word, gramma5cal category
(noun), number
lex(man,n,singular,_,_,ani).
lex(woman,n,singular,_,_,ani).
lex(dog,n,singular,_,_,ani).
lex(apple,n,singular,_,_,nani).
lex(chair,n,singular,_,_,nani).
lex(room,n,singular,_,_,nani).
% Thema5c rules we won't use.
%lex(X,n,singular,_,_,agent) :- lex(X,n,singular,_,_,ani).
%lex(X,n,singular,_,_,experiencer) :- lex(X,n,singular,_,_,ani).
lex(men,n,plural,_,_,ani).
lex(women,n,plural,_,_,ani).
lex(dogs,n,singular,_,_,ani).
lex(apples,n,plural,_,_,nani).
lex(chairs,n,plural,_,_,nani).
lex(rooms,n,plural,_,_,nani).
%%% Verbs %%%
% For verbs, the informa5on appears in the following order: word, gramma5cal category (verb), number
(singular/plural),
% gramma5cal person (1st, 2nd, 3rd)
%%% Transi5ve Verbs %%%
% Note that we do not have in this example Lexicon past par5ciples for every transi5ve verb:
% know, see, hire
lex(know,tv,singular,1,ani).
lex(know,tv,singular,2,ani).
lex(knows,tv,singular,3,ani).
lex(know,tv,plural,_,ani).
lex(see,tv,singular,1,ani).
lex(see,tv,singular,2,ani).
lex(sees,tv,singular,3,ani).
lex(see,tv,plural,_,ani).
lex(hire,tv,singular,1,ani).
lex(hire,tv,singular,2,ani).
lex(hires,tv,singular,3,ani).
lex(hire,tv,plural,_,ani).
lex(break,tv,singular,1,ani).
lex(break,tv,singular,2,ani).
lex(breaks,tv,singular,3,ani).
lex(break,tv,plural,_,ani).
lex(bite,tv,singular,1,ani).
lex(bite,tv,singular,2,ani).
lex(bites,tv,singular,3,ani).
lex(bite,tv,plural,_,ani).
%%% Past Par5ciple %%%
% These verb forms are used in the passive.
% Only the tv verbs can be passivized. We don't provide them all in this lis5ng,
% but as part of the coursework, you should add the pastPart of other tv verbs to the lexicon
% so as to recognise some of the sentences above and others.
% Note that verbs in the passive to not require animate subjects, though this is required of
% the transi5ve forms.
%
% You will need to add to the lexicon past par5ciple forms for all those verbs that are transi5ve above.
lex(broken,pastPart,singular,1,_).
lex(broken,pastPart,singular,2,_).
lex(broken,pastPart,singular,3,_).
lex(broken,pastPart,plural,_,_).
lex(bicen,pastPart,singular, 1, _).
lex(bicen,pastPart,singular, 2, _).
lex(bicen,pastPart,singular, 3, _).
lex(bicen,pastPart,plural, _, _).
%%% Intransi5ve verbs %%%
% These cannot go into the passive.
lex(fall,iv,singular,1,_).
lex(fall,iv,singular,2,_).
lex(falls,iv,singular,3,_).
lex(fall,iv,plural,_,_).
lex(sleep,iv,singular,1,ani).
lex(sleep,iv,singular,2,ani).
lex(sleeps,iv,singular,3,ani).
lex(sleep,iv,plural,_,ani).
%%% Auxiliary verbs (aux) for the passive %%%
% In this version of the lexicon, animacy of auxilary verbs is not necessary,
% though if the grammar is done in a different way, it might be.
lex(am,aux,singular,1).
lex(are,aux,singular,2).
lex(is,aux,singular,3).
lex(are,aux,plural,_).
%%% Determiners %%%
% For determiners, the informa5on appears in the following order: word, gramma5cal category
% (determiner), number
lex(the,det,_).
lex(a,det,singular).
lex(two,det,plural).
%%% Preposi5ons %%%
% For preposi5ons, the informa5on appears in the following order: word, gramma5cal category
(preposi5on)
lex(on,prep).
lex(in,prep).
lex(under,prep).
% We have a desigated category for the preposi5on for the passive by-phrase.
% When we connect to the grammar and used to recognised sentences, it will require
% an animate np. Consult the examples and discussion above.
lex(by,byPrep).
%%% Adjec5ves %%%
% For adjec5ves, the informa5on appears in the following order: word, gramma5cal category (adjec5ve)
lex(old,adj).
lex(young,adj).
lex(red,adj).
lex(short,adj).
lex(tall,adj).

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




















 

掃一掃在手機打開當前頁
  • 上一篇:FIT1047代做、Python/c++程序語言代寫
  • 下一篇:在菲律賓旅游安不安全 需要注意什么
  • ·GA.2250代做、代寫C++設計程序
  • ·代寫CS 211、Python/c++設計程序代做
  • ·代寫SCC.363、代做Java,c++設計程序
  • ·代做PHYS 52015、代寫C/C++設計程序
  • ·COMP3173 23F 代寫、代做 C++設計程序
  • ·CSCI 2122代寫、代做C++設計程序
  • ·COMP26020代做、代寫C++設計程序
  • ·EEEN30141代寫、代做C++設計程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲欧美国产视频| 久久亚裔精品欧美| 欧美一区二区三区在线观看视频| 亚洲一区二区三区精品视频| 亚洲一区二区三区成人在线视频精品 | 欧美日韩一区二区三区| 欧美日韩在线不卡| 国产精品一区毛片| 中文精品一区二区三区 | 免费亚洲一区二区| 欧美日韩精品一区视频 | 一区二区三区视频在线看| 亚洲欧美日本伦理| 久久亚洲精品视频| 欧美亚一区二区| 黄色成人91| 亚洲视屏在线播放| 免费欧美在线| 国产精品日日做人人爱| 亚洲大片av| 午夜精品久久久久久久男人的天堂 | 久久精品在线| 日韩亚洲一区二区| 久久在线免费视频| 国产精品美女主播在线观看纯欲| 精品成人久久| 亚洲制服少妇| 欧美精品在线观看| 韩国精品在线观看| 亚洲一区二区三区三| 蜜臀99久久精品久久久久久软件| 欧美午夜片在线观看| 亚洲激情自拍| 久久精品91久久香蕉加勒比| 欧美网站在线| 一本大道久久精品懂色aⅴ| 久久精品女人的天堂av| 国产精品第一区| 日韩一区二区精品葵司在线| 老色批av在线精品| 黄色另类av| 久久精品中文字幕一区| 国产视频一区在线观看一区免费| 亚洲午夜精品一区二区三区他趣| 欧美激情视频一区二区三区在线播放 | 国产日韩综合| 亚洲欧美日韩一区二区在线 | 伊人久久亚洲热| 久久精品视频播放| 国产亚洲欧美一级| 久久精品国产综合| 好吊成人免视频| 久久午夜精品| 亚洲国产欧美久久| 欧美国产一区二区| 亚洲精品国产精品国自产观看| 久久影视精品| 亚洲欧洲午夜| 欧美激情精品久久久久久蜜臀 | 久久精品国产亚洲a| 国产精品天天摸av网| 亚洲女ⅴideoshd黑人| 国产精品日韩在线播放| 亚洲免费视频网站| 国产亚洲精品久久飘花 | 国产日韩专区在线| 久久精品欧美日韩| 一色屋精品视频在线观看网站| 久久全国免费视频| 最新国产の精品合集bt伙计| 欧美精品在线视频观看| 亚洲视屏在线播放| 国产午夜精品久久久| 久久久久久国产精品mv| 最近看过的日韩成人| 欧美午夜一区二区福利视频| 午夜精品一区二区在线观看| 国产人妖伪娘一区91| 久久夜色精品国产欧美乱| 91久久精品一区| 国产精品白丝av嫩草影院| 亚洲欧美制服另类日韩| 在线精品国产成人综合| 欧美日韩亚洲天堂| 久久国产精品99国产| 亚洲欧洲偷拍精品| 国产精品一区二区三区四区五区 | 久久久www成人免费精品| 亚洲激情一区二区| 国产精品亚发布| 欧美成人资源| 午夜精品福利在线观看| 亚洲国产日韩一区| 国产日产亚洲精品系列| 欧美国产日韩二区| 久久精品官网| 亚洲天堂网在线观看| 有坂深雪在线一区| 国产精品乱子久久久久| 欧美bbbxxxxx| 久久精品国产2020观看福利| 亚洲另类在线视频| 国内外成人免费激情在线视频| 国产日韩精品在线播放| 欧美日韩国产成人高清视频| 欧美呦呦网站| 亚洲欧美精品在线观看| 最新国产成人av网站网址麻豆| 国产日韩欧美三级| 欧美日韩一区不卡| 欧美不卡高清| 久久久蜜桃精品| 午夜欧美大片免费观看| 99精品欧美一区二区蜜桃免费| 久久爱另类一区二区小说| 欧美午夜精品理论片a级按摩 | 国产综合自拍| 欧美午夜电影一区| 欧美精品三级| 女人天堂亚洲aⅴ在线观看| 午夜在线a亚洲v天堂网2018| 亚洲视频导航| 一本色道久久综合狠狠躁篇的优点 | 欧美国产精品v| 久久婷婷国产综合国色天香| 午夜在线精品| 校园激情久久| 欧美一区二区高清| 欧美在线www| 久久av一区二区三区| 欧美在线观看视频在线| 性欧美在线看片a免费观看| 亚洲欧美视频一区二区三区| 亚洲制服少妇| 亚洲欧美中文日韩在线| 性久久久久久| 久久精品视频导航| 久久天堂成人| 国产精品国产三级国产普通话三级 | 国产精品高潮呻吟久久av黑人| 欧美日韩国产影片| 欧美视频不卡| 国产欧美日韩精品丝袜高跟鞋 | 国产一区二区主播在线| 国产一区三区三区| 伊人久久亚洲热| 亚洲欧洲日本专区| 一区二区高清| 性欧美精品高清| 久久综合一区二区三区| 欧美黑人国产人伦爽爽爽| 欧美日韩在线一区| 国产欧美精品xxxx另类| 狠狠干成人综合网| 亚洲黄色成人网| 中文av一区特黄| 久久久成人精品| 欧美美女福利视频| 国产欧美精品在线观看| 亚洲电影专区| 亚洲欧美国产高清va在线播| 久久精品国产亚洲一区二区三区 | 国内精品视频666| 91久久极品少妇xxxxⅹ软件| 亚洲视频一二区| 老牛国产精品一区的观看方式| 欧美日韩国产页| 国产一区二区三区网站| 最新日韩在线视频| 午夜精品久久久久久久99樱桃 | 国产精品永久免费| 亚洲精品韩国| 久久国产精品久久国产精品| 欧美精品一二三| 韩国av一区二区三区四区| 亚洲精品在线免费| 久久久精品国产99久久精品芒果| 欧美精品成人| 影音先锋久久| 午夜精品久久久久久久久久久久| 欧美国产日韩精品免费观看| 国产欧美日韩另类视频免费观看 | 亚洲私人影院在线观看| 欧美日韩亚洲另类| 亚洲狠狠丁香婷婷综合久久久| 亚洲免费中文| 欧美午夜大胆人体| 亚洲人成在线免费观看| 久久精品一区中文字幕| 国产精品老牛| 亚洲美女视频在线观看| 美女网站久久| 国产亚洲精品资源在线26u| 亚洲午夜电影网| 欧美日韩国产专区| 亚洲激情视频网站| 久久婷婷激情| 1024成人网色www| 久久精品一区二区| 国产一区二区在线观看免费|