99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

Ac.F633代做、Python程序語(yǔ)言代寫

時(shí)間:2024-04-09  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Ac.F633 - Python Programming Final Individual Project
Ac.F633 - Python Programming for Data Analysis
Manh Pham
Final Individual Project
20 March 2024 noon/12pm to 10 April 2024 noon/12pm (UK time)
This assignment contains one question worth 100 marks and constitutes 60% of the
total marks for this course.
You are required to submit to Moodle a SINGLE .zip folder containing a single Jupyter Notebook .ipynb file OR a single Python script .py file, together with
any supporting .csv files (e.g. input data files. However, do NOT include the
‘IBM 202001.csv.gz’ data file as it is large and may slow down the upload and submission) AND a signed coursework coversheet. The name of this folder should be
your student ID or library card number (e.g. 12345678.zip, where 12345678 is your
student ID).
In your answer script, either Jupyter Notebook .ipynb file or Python .py file, you
do not have to retype the question for each task. However, you must clearly label
which task (e.g. 1.1, 1.2, etc) your subsequent code is related to, either by using a
markdown cell (for .ipynb file) or by using the comments (e.g. #1.1 or ‘‘‘1.1’’’
for .py file). Provide only ONE answer to each task. If you have more than one
method to answer a task, choose one that you think is best and most efficient. If
multiple answers are provided for a task, only the first answer will be marked.
Your submission .zip folder MUST be submitted electronically via Moodle by the
10 April 2024 noon/12pm (UK time). Email submissions will NOT be considered. If you have any issues with uploading and submitting your work to Moodle,
please email Carole Holroyd at c.holroyd@lancaster.ac.uk BEFORE the deadline
for assistance with your submission.
The following penalties will be applied to all coursework that is submitted after the
specified submission date:
Up to 3 days late - deduction of 10 marks
Beyond 3 days late - no marks awarded
Good Luck!
1
Ac.F633 - Python Programming Final Individual Project
Question 1:
Task 1: High-frequency Finance (Σ = 30 marks)
The data file ‘IBM 202001.csv.gz’ contains the tick-by-tick transaction data for
stock IBM in January 2020, with the following information:
Fields Definitions
DATE Date of transaction
TIME M Time of transaction (seconds since mid-night)
SYM ROOT Security symbol root
EX Exchange where the transaction was executed
SIZE Transaction size
PRICE Transaction price
NBO Ask price (National Best Offer)
NBB Bid price (National Best Bid)
NBOqty Ask size
NBBqty Bid size
BuySell Buy/Sell indicator (1 for buys, -1 for sells)
Import the data file into Python and perform the following tasks:
1.1: Write code to perform the filtering steps below in the following order: (15 marks)
F1: Remove entries with either transaction price, transaction size, ask price,
ask size, bid price or bid size ≤ 0
F2: Remove entries with bid-ask spread (i.e. ask price - bid price) ≤ 0
F3: Aggregate entries that are (a) executed at the same date time (i.e. same
‘DATE’ and ‘TIME M’), (b) executed on the same exchange, and (c) of
the same buy/sell indicator, into a single transaction with the median
transaction price, median ask price, median bid price, sum transaction
size, sum ask size and sum bid size.
F4: Remove entries for which the bid-ask spread is more that 50 times the
median bid-ask spread on each day
F5: Remove entries with the transaction price that is either above the ask
price plus the bid-ask spread, or below the bid price minus the bid-ask
spread
Create a data frame called summary of the following format that shows the
number and proportion of entries removed by each of the above filtering steps.
The proportions (in %) are calculated as the number of entries removed divided
by the original number of entries (before any filtering).
F1 F2 F3 F4 F5
Number
Proportion
Here, F1, F2, F3, F4 and F5 are the columns corresponding to the above 5
filtering rules, and Number and Proportion are the row indices of the data
frame.
2
Ac.F633 - Python Programming Final Individual Project
1.2: Using the cleaned data from Task 1.1, write code to compute Realized
Volatility (RV), Bipower Variation (BV) and Truncated Realized Volatility
(TRV) measures (defined in the lectures) for each trading day in the sample
using different sampling frequencies including 1 second (1s), 2s, 3s, 4s, 5s, 10s,
15s, 20s, 30s, 40s, 50s, 1 minute (1min), 2min, 3min, 4min, 5min, 6min, 7min,
8min, 9min, 10min, 15min, 20min and 30min. The required outputs are 3
data frames RVdf, BVdf and TRVdf (for Realized Volatility, Bipower Variation
and Truncated Realized Volatility respectively), each having columns being
the above sampling frequencies and row index being the unique dates in the
sample. (10 marks)
1.3: Use results in Task 1.2, write code to produce a **by-3 subplot figure that
shows the ‘volatility signature plot’ for RV, BV and TRV. Scale (i.e. multiply)
the RVs, BVs and TRVs by 104 when making the plots. Your figure should
look similar to the following.
0 500 1000 1500
Sampling frequency (secs)
1.0
1.5
2.0
2.5
A
v
era
g
e
d
R
V (x10
4
)
RV signature plot
0 500 1000 1500
Sampling frequency (secs)
0.6
0.8
1.0
1.2
1.4
A
v
era
g
e
d
B
V (x10
4
)
BV signature plot
0 500 1000 1500
Sampling frequency (secs)
0.5
0.6
0.7
0.8
0.9
1.0
A
v
era
g
e
d
T
R
V (x10
4
)
TRV signature plot
(5 marks)
Task 2: Return-Volatility Modelling (Σ = 25 marks)
Refer back to the csv data file ‘DowJones-Feb2022.csv’ that lists the constituents of the Dow Jones Industrial Average (DJIA) index as of 9 February
2022 that was investigated in the group project. Import the data file into
Python.
Using your student ID or library card number (e.g. 12345678) as a random
seed, draw a random sample of 2 stocks (i.e. tickers) from the DJIA index
excluding stock DOW.1
Import daily Adjusted Close (Adj Close) prices for
both stocks between 01/01/2010 and 31/12/2023 from Yahoo Finance. Compute the log daily returns (in %) for both stocks and drop days with NaN
returns. Perform the following tasks.
2.1: Using data between 01/01/2010 and 31/12/2020 as in-sample data, write
code to find the best-fitted ARMA(p, q) model for returns of each stock that
minimizes AIC, with p and q no greater than 3. Print the best-fitted ARMA(p, q)
output and a statement similar to the following for your stock sample.
Best-fitted ARMA model for WBA: ARMA(2,2) - AIC = 11036.8642
Best-fitted ARMA model for WMT: ARMA(2,3) - AIC = 8810.4277 (5 marks)
1DOW only started trading on 20/03/2019
3
Ac.F633 - Python Programming Final Individual Project
2.2: Write code to plot a 2-by-4 subplot figure that includes the following diagnostics for the best-fitted ARMA model found in Task 2.1:
Row 1: (i) Time series plot of the standardized residuals, (ii) histogram of
the standardized residuals, fitted with a kernel density estimate and the
density of a standard normal distribution, (iii) ACF of the standardized
residuals, and (iv) ACF of the squared standardized residuals.
Row 2: The same subplots for the second stock.
Your figure should look similar to the following for your sample of stocks.
Comment on what you observe from the plots. (6 marks)
2010 2012 2014 2016 2018 2020
Date
8
6
4
2
0
2
4
6
ARMA(2,2) Standardized residuals-WBA
3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6
Density
Distribution of standardized residuals
N(0,1)
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
ACF of standardized residuals
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00 ACF of standardized residuals squared
2010 2012 2014 2016 2018 2020
Date
7.5
5.0
2.5
0.0
2.5
5.0
7.5
ARMA(2,3) Standardized residuals-WMT
3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6
Density
Distribution of standardized residuals
N(0,1)
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
ACF of standardized residuals
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00 ACF of standardized residuals squared
2.3: Use the same in-sample data as in Task 2.1, write code to find the bestfitted AR(p)-GARCH(p

, q∗
) model with Student’s t errors for returns of each
stock that minimizes AIC, where p is fixed at the AR lag order found in
Task 2.1, and p
∗ and q
∗ are no greater than 3. Print the best-fitted AR(p)-
GARCH(p

, q∗
) output and a statement similar to the following for your stock
sample.
Best-fitted AR(p)-GARCH(p*,q*) model for WBA: AR(2)-GARCH(1,1) - AIC
= 10137.8509
Best-fitted AR(p)-GARCH(p*,q*) model for WMT: AR(2)-GARCH(3,0) - AIC
= 7743.** (5 marks)
2.4: Write code to plot a 2-by-4 subplot figure that includes the following diagnostics for the best-fitted AR-GARCH model found in Task 2.3:
Row 1: (i) Time series plot of the standardized residuals, (ii) histogram of
the standardized residuals, fitted with a kernel density estimate and the
density of a fitted Student’s t distribution, (iii) ACF of the standardized
residuals, and (iv) ACF of the squared standardized residuals.
Row 2: The same subplots for the second stock.
Your figure should look similar to the following for your sample of stocks.
Comment on what you observe from the plots. (6 marks)
4
Ac.F633 - Python Programming Final Individual Project
2010 2012 2014 2016 2018 2020
Date
10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5
AR(2)-GARCH(1,1) Standardized residuals-WBA
3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6
Density
Distribution of standardized residuals
t(df=3.7)
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
ACF of standardized residuals
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00 ACF of standardized residuals squared
2010 2012 2014 2016 2018 2020
Date
10
5
0
5
10
AR(2)-GARCH(3,0) Standardized residuals-WMT
3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
Density
Distribution of standardized residuals
t(df=3.9)
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
ACF of standardized residuals
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00 ACF of standardized residuals squared
2.5: Write code to plot a **by-2 subplot figure that shows the fitted conditional
volatility implied by the best-fitted AR(p)-GARCH(p

, q∗
) model found in
Task 2.3 against that implied by the best-fitted ARMA(p, q) model found in
Task 2.1 for each stock in your sample. Your figure should look similar to the
following.
2010
2012
2014
2016
2018
2020
Date
1
2
3
4
5
6
7
Fitted conditional volatility for stock WBA
AR(2)-GARCH(1,1)
ARMA(2,2)
2010
2012
2014
2016
2018
2020
Date
1
2
3
4
5
6
Fitted conditional volatility for stock WMT
AR(2)-GARCH(3,0)
ARMA(2,3)
(3 marks)
Task 3: Return-Volatility Forecasting (Σ = 25 marks)
3.1: Use data between 01/01/2021 and 31/12/2023 as out-of-sample data, write
code to compute one-step forecasts, together with 95% confidence interval
(CI), for the returns of each stock using the respective best-fitted ARMA(p, q)
model found in Task 2.1. You should extend the in-sample data by one observation each time it becomes available and apply the fitted ARMA(p, q) model
to the extended sample to produce one-step forecasts. Do NOT refit the
ARMA(p, q) model for each extending window.2 For each stock, the forecast
output is a data frame with 3 columns f, fl and fu corresponding to the
one-step forecasts, 95% CI lower bounds, and 95% CI upper bounds. (5 marks)
3.2: Write code to plot a **by-2 subplot figure showing the one-step return
forecasts found in Task 3.1 against the true values during the out-of-sample
2Refitting the model each time a new observation comes generally gives better forecasts. However,
it slows down the program considerably so we do not pursue it here.
5
Ac.F633 - Python Programming Final Individual Project
period for both stocks in your sample. Also show the 95% confidence interval
of the return forecasts. Your figure should look similar to the following.
202**05
202**09
2022-01
2022-05
2022-09
2023-01
2023-05
2023-09
Date
10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5
ARMA(2,2) One-step return forecasts - WBA
Observed
Forecasts
95% IC
202**05
202**09
2022-01
2022-05
2022-09
2023-01
2023-05
2023-09
Date
12.5
10.0
7.5
5.0
2.5
0.0
2.5
5.0
ARMA(2,3) One-step return forecasts - WMT
Observed
Forecasts
95% IC
(3 marks)
3.3: Write code to produce one-step analytic forecasts, together with 95%
confidence interval, for the returns of each stock using respective best-fitted
AR(p)-GARCH(p

, q∗
) model found in Task 2.3. For each stock, the forecast
output is a data frame with 3 columns f, fl and fu corresponding to the
one-step forecasts, 95% CI lower bounds, and 95% CI upper bounds. (4 marks)
3.4: Write code to plot a **by-2 subplot figure showing the one-step return
forecasts found in Task 3.3 against the true values during the out-of-sample
period for both stocks in your sample. Also show the 95% confidence interval
of the return forecasts. Your figure should look similar to the following.
202**05
202**09
2022-01
2022-05
2022-09
2023-01
2023-05
2023-09
Date
15
10
5
0
5
10
15
AR(2)-GARCH(1,1) One-step return forecasts - WBA
Observed
Forecasts
95% IC
202**05
202**09
2022-01
2022-05
2022-09
2023-01
2023-05
2023-09
Date
15
10
5
0
5
10
15
AR(2)-GARCH(3,0) One-step return forecasts - WMT
Observed
Forecasts
95% IC (3 marks)
3.5: Denote by et+h|t = yt+h − ybt+h|t
the h-step forecast error at time t, which
is the difference between the observed value yt+h and an h-step forecast ybt+h|t
produced by a forecast model. Four popular metrics to quantify the accuracy
of the forecasts in an out-of-sample period with T
′ observations are:
1. Mean Absolute Error: MAE = 1
T′
PT

t=1 |et+h|t
|
2. Mean Square Error: MSE = 1
T′
PT

t=1 e
2
t+h|t
3. Mean Absolute Percentage Error: MAPE = 1
T′
PT

t=1 |et+h|t/yt+h|
4. Mean Absolute Scaled Error: MASE = 1
T′
PT

t=1





et+h|t
1
T′−1
PT′
t=2 |yt − yt−1|





.
6
Ac.F633 - Python Programming Final Individual Project
The closer the above measures are to zero, the more accurate the forecasts.
Now, write code to compute the four above forecast accuracy measures for
one-step return forecasts produced by the best-fitted ARMA(p,q) and AR(p)-
GARCH(p

,q

) models for each stock in your sample. For each stock, produce
a data frame containing the forecast accuracy measures of a similar format
to the following, with columns being the names of the above four accuracy
measures and index being the names of the best-fitted ARMA and AR-GARCH
model:
MAE MSE MAPE MASE
ARMA(2,2)
AR(2)-GARCH(1,1)
Print a statement similar to the following for your stock sample:
For WBA:
Measures that ARMA(2,2) model produces smaller than AR(2)-GARCH(1,1)
model:
Measures that AR(2)-GARCH(1,1) model produces smaller than ARMA(2,2)
model: MAE, MSE, MAPE, MASE. (5 marks)
3.6: Using a 5% significance level, conduct the Diebold-Mariano test for each
stock in your sample to test if the one-step return forecasts produced by the
best-fitted ARMA(p,q) and AR(p)-GARCH(p

,q

) models are equally accurate
based on the three accuracy measures in Task 3.5. For each stock, produce a
data frame containing the forecast accuracy measures of a similar format to
the following:
MAE MSE MAPE MASE
ARMA(2,2)
AR(2)-GARCH(1,1)
DMm
pvalue
where ‘DMm’ is the Harvey, Leybourne & Newbold (1997) modified DieboldMariano test statistic (defined in the lecture), and ‘pvalue’ is the p-value associated with the DMm statistic. Draw and print conclusions whether the bestfitted ARMA(p,q) model produces equally accurate, significantly less accurate
or significantly more accurate one-step return forecasts than the best-fitted
AR(p)-GARCH(p

,q

) model based on each accuracy measure for your stock
sample.
Your printed conclusions should look similar to the following:
For WBA:
Model ARMA(2,2) produces significantly less accurate one-step return
forecasts than model AR(2)-GARCH(1,1) based on MAE.
Model ARMA(2,2) produces significantly less accurate one-step return
forecasts than model AR(2)-GARCH(1,1) based on MSE.
Model ARMA(2,2) produces significantly less accurate one-step return
forecasts than model AR(2)-GARCH(1,1) based on MAPE.
Model ARMA(2,2) produces significantly less accurate one-step return
forecasts than model AR(2)-GARCH(1,1) based on MASE. (5 marks)
7
Ac.F633 - Python Programming Final Individual Project
Task 4: (Σ = 20 marks)
These marks will go to programs that are well structured, intuitive to use (i.e.
provide sufficient comments for me to follow and are straightforward for me
to run your code), generalisable (i.e. they can be applied to different sets of
stocks (2 or more)) and elegant (i.e. code is neat and shows some degree of
efficiency).
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















 

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:菲律賓回國(guó)探親簽證多久出結(jié)果 Q1辦理的材料匯總
  • 下一篇:COMP3334代做、SQL設(shè)計(jì)編程代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲毛片在线免费观看| 久久久之久亚州精品露出| 狼人社综合社区| 欧美性色视频在线| 亚洲成人资源网| 先锋影院在线亚洲| 欧美日韩在线视频一区| 亚洲国产精品嫩草影院| 久久久久久久欧美精品| 国产日韩欧美精品| 亚洲一区在线看| 国产精品久久久久久av下载红粉 | 亚洲一区二区三区国产| 欧美成人有码| 亚洲激情国产| 毛片一区二区三区| 1024精品一区二区三区| 亚洲视频一区二区免费在线观看| 蜜臀av国产精品久久久久| 国产无一区二区| 亚欧成人精品| 国产视频精品xxxx| 久久精品日韩一区二区三区| 国产午夜精品久久久| 久久国产高清| 亚洲高清不卡在线观看| 裸体素人女欧美日韩| 一区二区三区我不卡| 老司机免费视频久久| 亚洲日本中文字幕区| 欧美国产欧美综合 | 欧美视频一区| 亚洲无线一线二线三线区别av| 日韩亚洲欧美综合| 国产精品乱子乱xxxx| 午夜久久久久久久久久一区二区| 国产精品日韩欧美一区| 一区二区亚洲欧洲国产日韩| 两个人的视频www国产精品| 亚洲精品一区在线观看| 国产精品久久久久国产a级| 久久国产精品亚洲va麻豆| 亚洲国产精品福利| 欧美国产专区| 亚洲午夜国产一区99re久久 | 老司机成人网| 亚洲少妇最新在线视频| 国产精品视频999| 久久精品亚洲热| 亚洲精品一区在线观看| 国产精品一区二区三区四区| 久久综合九色综合网站| 亚洲视频综合| 在线观看欧美| 欧美风情在线| 亚洲视频在线观看网站| 国产亚洲人成网站在线观看| 免费看的黄色欧美网站| 亚洲精品一区二区在线| 国产亚洲成av人在线观看导航 | 美女精品国产| 亚洲精品欧美在线| 国产日韩一区二区三区在线| 美女免费视频一区| 校园春色国产精品| 一区二区三区产品免费精品久久75| 国产日韩欧美在线| 好看的亚洲午夜视频在线| 欧美日韩亚洲一区二区| 久久久亚洲精品一区二区三区| 亚洲日韩欧美视频一区| 韩国精品一区二区三区| 欧美偷拍一区二区| 久久久五月天| 亚洲天堂av在线免费观看| 亚洲国产欧美日韩另类综合| 国产欧美日韩亚洲| 欧美色欧美亚洲另类七区| 欧美**字幕| 久久精品导航| 亚洲一区二区三区免费视频| 亚洲美女福利视频网站| 亚洲三级影片| 激情成人av在线| 国产一区二区| 欧美天堂亚洲电影院在线播放| 久久久999精品| 性视频1819p久久| 亚洲专区一区| 亚洲字幕一区二区| 99re6这里只有精品| 亚洲国产日韩欧美在线99| 国内精品一区二区| 国产三级精品在线不卡| 国产农村妇女精品一二区| 国产精品麻豆成人av电影艾秋| 欧美日韩国产小视频| 欧美精品偷拍| 欧美日韩中文字幕精品| 欧美日韩在线一区二区三区| 欧美日韩美女在线| 欧美日韩一区二区三区| 欧美性开放视频| 国产精品一区二区久久| 国产日韩欧美一区在线 | 一二三区精品福利视频| 一本色道久久综合一区| 中文网丁香综合网| 亚洲一区欧美激情| 欧美一二区视频| 久久精品久久99精品久久| 久久精品一区二区三区不卡牛牛| 久久精品国产一区二区电影| 欧美资源在线观看| 美国三级日本三级久久99| 美日韩精品视频免费看| 欧美日韩1区| 国产精品久久一卡二卡| 国产丝袜美腿一区二区三区| 国产一区在线视频| 亚洲国产成人一区| 日韩天堂在线观看| 午夜一级久久| 久久人人九九| 欧美日韩精品综合在线| 国产精品永久免费观看| 精品粉嫩aⅴ一区二区三区四区| 怡红院av一区二区三区| 亚洲裸体视频| 欧美伊人久久久久久午夜久久久久 | 亚洲综合色婷婷| 久久久久久久一区二区三区| 欧美激情第9页| 国产精品专区h在线观看| 亚洲电影免费观看高清完整版在线观看 | 亚洲国产成人久久综合一区| 亚洲免费观看在线视频| 欧美亚洲免费电影| 免费一级欧美片在线观看| 欧美日本一区二区三区| 国产精品久久久久久久浪潮网站| 国产一区二区三区丝袜| 日韩视频在线免费| 久久国产精品99久久久久久老狼| 美女被久久久| 国产精品一区二区你懂得 | 在线观看日韩av电影| 亚洲一区影院| 欧美国产日本| 精品白丝av| 亚洲欧美日韩精品一区二区 | 韩国精品在线观看| 亚洲免费av片| 开心色5月久久精品| 国产精品久久久久久久久免费桃花 | 一区二区三区不卡视频在线观看| 久久se精品一区二区| 国产精品久久久久久福利一牛影视| 亚洲成人自拍视频| 久久精品卡一| 国产精品视频精品视频| 亚洲美女视频| 久久午夜视频| 国产欧美日韩在线视频| 亚洲久久在线| 欧美va天堂| 又紧又大又爽精品一区二区| 亚洲欧美日韩精品久久亚洲区| 欧美日韩成人一区二区| 136国产福利精品导航| 亚洲永久字幕| 欧美日韩成人在线观看| 激情亚洲一区二区三区四区| 午夜精品久久久久久久99樱桃| 欧美精品导航| 中日韩男男gay无套| 美女视频黄 久久| 黑人极品videos精品欧美裸| 亚洲四色影视在线观看| 欧美视频中文在线看| 日韩一级片网址| 欧美日本成人| 日韩亚洲欧美成人| 欧美精品在线免费观看| 亚洲免费观看在线视频| 欧美人体xx| 在线亚洲+欧美+日本专区| 国产精品扒开腿爽爽爽视频 | 亚洲精品欧美精品| 欧美激情亚洲自拍| 亚洲精品视频免费| 欧美日韩一区在线播放| 99伊人成综合| 国产精品国产精品国产专区不蜜| 一区二区三区久久精品| 国产女主播在线一区二区| 久久精品欧美| 91久久在线视频| 欧美三级韩国三级日本三斤| 亚洲欧美国产制服动漫|