99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代做CS 550、代寫c++,Java編程語言

時間:2024-03-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 550 Operating Systems, Spring 2024
Programming Project 2 (PROJ2)
Out: 2/25/2024, SUN
Due date: 3/23/2024, SAT 23:59:59
There are two parts in this project: coding and Q&A. In the coding part, you will implement a
functionality that changes the outcomes of race conditions after forking in xv6, and implement an
MLFQ-like scheduler for xv6. In the Q&A part, you will need to answer the questions about xv6
process scheduling.
1 Baseline source code
You will work on the base code that needs to be cloned/downloaded from your own private GitHub
repository. Make sure you read this whole section, as well as the grading guidelines (Section 5),
before going to the following link at the end of this section.
• Go to the link at the end of this section to accept the assignment.
• Work on and commit your code to the default branch of your repository. Do not create a
new branch. Failure to do so will lead to problems with the grading script and 5 points off
of your project grade.
Assignment link: https://classroom.github.com/a/2n4W593t
(Continue to the next page.)
1
2 Process scheduling in xv6 - coding (70 points)
2.1 Race condition after fork() (20 points)
As we discussed in class, after a fork(), either the parent process or the child process can be
scheduled to run first. Some OSes schedule the parent to run first most often, while others allow
the child to run first mostly. As you will see, the xv6 OS schedules the parents to run first after
fork()s mostly. In this part, you will change this race condition to allow user programs to specify
which process should run first (i.e., be the winner) after fork() returns.
2.1.1 The test driver program and the expected outputs
The baseline code has included a test driver program fork rc test that allows you to check
the race condition after a fork(). The program is implemented in fork rc test.c. In the
program, the parent process repeatedly calls fork(). After fork(), the parent process prints
string a “parent” when it runs, and the child process prints a string “child” and exits.
The program takes one argument to specify which process should be the “winner” process after
fork() returns. Here is the usage of the program:
$ fork_rc_test
Usage: fork_rc_test 0|1
0: Parent is scheduled to run most often
1: Child is scheduled to run most often
When calling the program using ”fork rc test 0”, the parent process is the fork winner and is
scheduled to run first after fork() most often, which is the default behavior with xv6. You will
see output like the following:
$ fork_rc_test 0
Setting parent as the fork winner ...
Trial 0: parent! child!
Trial 1: parent! child!
Trial 2: parent! child!
Trial 3: pare child! nt!
Trial 4: parent! child!
Trial 5: parent! child!
...
Trial 45: child! parent!
Trial 46: parent! child!
Trial **: parent! child!
Trial 48: parent child! !
Trial 49: pare child! nt!
Note that in the above output, the parent did not always run first. But it was so for most trials.
What determines which process runs first after the fork? Think about the reason. You will answer
a related question later in the Q&A part (Section 3).
When calling the program using ”fork rc test 1”, the child process is the fork winner and is
scheduled to run first after fork() most often. With a correct implementation, the expected
output of the test driver program looks like:
2
$ fork_rc_test 1
Setting child as the fork winner ...
Trial 0: child! parent!
Trial 1: child! parent!
Trial 2: child! parent!
Trial 3: c parent! hild!
Trial 4: child! parent!
Trial 5: child! parent!
...
Trial 45: child! parent!
Trial 46: child! parent!
Trial **: child! parent!
Trial 48: child! parent!
Trial 49: child! parent!
2.1.2 What to do
(1) Figure out what to do to change the race condition to enable the feature of changing fork
winner.
(2) Implement a system call that sets the fork winner.
(3) Implement a user space wrapper function for the above system call, and declare it in “user.h”.
This wrapper function’s prototype should be
int fork_winner(int winner);
This function takes one argument:
• If the argument is 0 (i.e., fork winner(0)), the parent process is the winner and
should be scheduled first after fork() most often (this is the default behavior);
• If the argument is 1 (i.e., fork winner(1)), the child process is the winner and should
be scheduled first after fork() most often.
Note: for the proper compilation of the base code, the fork rc test program has a stub
implementation for the wrapper function above. Remember to comment it out after developing
your own solution.
Tips: understanding the code for fork and CPU scheduling is key. The actual code that changes
the race condition (excluding the system-call-related code) can be less than 2 LOC.
(Continue to next page.)
3
2.2 MLFQ scheduling (50 points)
The default scheduler of xv6 adopts a round-robin (RR) policy. In this part, you are going to
implement a scheduler that adopts a scheduling algorithm similar to the MLFQ scheduling policy
we discussed in class.
Specifically, the MLFQ-like process scheduler should work following the rules below:
• Rule 1: There are three different scheduling priorities: 3, 2, and 1, with 3 being the highest
and 1 being the lowest.
• Rule 2: At any given time, the scheduling priority of a process is set to one of the three
values above.
• Rule 3: Runnable processes are scheduled based on their scheduling priorities: processes
with higher priorities will be scheduled before those with lower priorities. RR is used for
scheduling processes that have the same priority.
• Rule 4: When a process is forked, its scheduling priority is set to 3, and its priority is
changed using the following rule.
• Rule 5: Except for the lowest priority (i.e., priority 1), each priority is associated with a
scheduling allotment, which is the number of times that a process with this priority can be
scheduled before the process is demoted to the next lower priority. For example,
– When a process is created, its scheduling priority is set to 3. When this process has
been scheduled x times since its scheduling priority was set to 3, its scheduling priority
is demoted to 2. Therefore, the scheduling allotment for priority 3 is x. The default
value of x is 2.
– When a process with scheduling priority 2 has been scheduled y times since its scheduling priority was set to 2, its scheduling priority is demoted to 1. Therefore, the scheduling allotment for priority 2 is y. The default value of y is 4.
• Rule 6: After a process’s scheduling priority is demoted to 1, it stays with that priority
until it completes.
• Rule 7: When user code uses the set sched() interface to set the scheduling policy to
MLFQ, the scheduler should be reset as if it is a fresh start. This means that the scheduling
priority of the existing processes should be reset back to 3.
2.2.1 The test program, test cases and their expected output
(1) To help you implement and debug, a scheduling tracing functionality has been added to the
base code. When this tracing functionality is enabled, the kernel prints a string like the
following every time before a process is scheduled.
[MLFQ] PID:7|PRT:3
The above string means the MLFQ scheduler is going to schedule the process with PID 7, and
the process’s scheduling priority is 3. With this scheduling tracing functionality, you can see
the sequence of processes that the scheduler schedules.
4
(2) The code (schdtest.c) for test program that will be used for grading (schdtest) has been
provided. This code is not supposed to be changed except for commenting out or removing
the stub functions at the top. Reading and understanding this test program and each of the
test cases will be helpful.
(3) Five test cases are used in the test program. Each of this test cases and their expected output
are described as follows.
• Test case 1: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to the default one (i.e., RR), creates 3 child processes,
each of which performs some long computation, and waits for their completion. When
all three child process complete, the parent process disables the scheduling tracing. The
expected scheduling tracing output is as follows:
>>>>> Test case 1: testing default scheduler (RR) ...
Parent: child (pid=4) created!
Parent: child (pid=5) created!
Parent: child (pid=6) created!
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
...
[RR] PID:3|PRT:0 -> [RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:3|PRT:0 ->
Since the RR scheduler does not use scheduling priority, the scheduling priority of individual processes should be set to 0 when RR is in effect. From the output we can see
that the RR was indeed the scheduling policy.
• Test case 2: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to MLFQ, creates 3 child processes, each of which performs
some long computation, and waits for their completion. When all three child process
complete, the parent process disables the scheduling tracing. The expected scheduling
tracing output is as follows:
>>>>> Test case 2: testing MLFQ scheduler with default allotment ...
Parent: child (pid=7) created!
Parent: child (pid=8) created!
Parent: child (pid=9) created!
[MLFQ] PID:7|PRT:3 -> [MLFQ] PID:8|PRT:3 -> [MLFQ] PID:9|PRT:3 ->
[MLFQ] PID:7|PRT:3 -> [MLFQ] PID:8|PRT:3 -> [MLFQ] PID:9|PRT:3 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
...
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:3|PRT:3 -> [MLFQ] PID:8|PRT:1 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
5
[MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:9|PRT:1 -> [MLFQ] PID:3|PRT:2 ->
The default allotments are used in this test case. Therefore, as shown in the scheduling
tracing output, the three child processes started with priority 3 at the beginning. They
were scheduled in an RR manner 2 times and were demoted to priority 2 (because the
default allotment for priority 3 is 2). While their scheduling priority was 2, they were
scheduled in an RR manner 4 times and then were demoted to priority 1 (because the
default allotment for priority 2 is 4).
Note that the PID of the parent process is 3 in this example. The parent process was
not scheduled until the end of the trace because it was waiting for the child processes’
completion. It was scheduled three times at the end (see the last three lines in the output),
each of which was returning from wait() when one of the child processes exited.
• Test case 3: This is a repeat of test case 1.
• Test case 4: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to MLFQ, creates 3 child processes, each of which performs
some long computation, and waits for their completion. In the middle of the long computation, one of the three child process (whose PID is multiples of 3) forks a grand-child
process which is termed as “runtime generated process” in the test code, and waits for
its completion. When all three child process complete, the parent process disables the
scheduling tracing. The expected scheduling tracing output is as follows:
>>>>> Test case 4: testing MLFQ scheduler with runtime generated process ...
Parent: child (pid=13) created!
Parent: child (pid=14) created!
Parent: child (pid=15) created!
[MLFQ] PID:13|PRT:3 -> [MLFQ] PID:14|PRT:3 -> [MLFQ] PID:15|PRT:3 ->
[MLFQ] PID:13|PRT:3 -> [MLFQ] PID:14|PRT:3 -> [MLFQ] PID:15|PRT:3 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
...
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:16|PRT:3 -> [MLFQ] PID:16|PRT:3 -> [MLFQ] PID:16|PRT:2 ->
[MLFQ] PID:16|PRT:2 -> [MLFQ] PID:16|PRT:2 -> [MLFQ] PID:16|PRT:2 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
...
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:3|PRT:3 -> [MLFQ] PID:14|PRT:1 ->
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:16|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
...
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
...
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:3|PRT:2 ->
6
This test case is similar to test case 2 but with a new process generated during runtime.
In the above output, the PID of the runtime-generated process is 16, and the PID of the
runtime-generated process’s parent is 15. If one understands the expected output of test
case 2, the above output for this test case should be easily understandable.
• Test case 5: This test case is similar to test case 2 but with different allotments than
the default one. The allotments of priority 3 and 2 are set to 4 and 8 before the test, and
they are set back to the default values after the test. The expected scheduling tracing
output is as follows:
>>>>> Test case 5: testing MLFQ scheduler with new allotments ...
Parent: child (pid=17) created!
Parent: child (pid=18) created!
Parent: child (pid=19) created!
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
...
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:17|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:19|PRT:1 -> [MLFQ] PID:3|PRT:2 -> [MLFQ] PID:3|PRT:2 ->
Again, the above output should be easily understandable if one understands that of test
case 2.
2.2.2 What to do
(1) If you run the test program included in the base code, you’ll notice that the output of the OS
kernel scheduling tracing messages is mixed with the messages printed by the parent process.
This is because scheduling context switches happen as the parent process is forking child
processes. To ensure that the test program can generate a nicely formatted output as shown
above, your job is to implement a functionality that allows user programs to pause scheduling
different processes.
• Write a system call that pauses process scheduling. When process scheduling is paused,
the OS will keep running the current process until process scheduling is enabled again.
• Write the corresponding system call user space wrapper function, and declare it in
“user.h”. The wrapper function’s prototype should be:
7
void pause_scheduling(int pause);
– Description: This function pauses process scheduling.
– Arguments: This function takes one arguments.
– pause: To pause process scheduling, set this argument to 1. To enable process
scheduling, set this argument to 0.
– Return value: This function has no return value.
(2) Implement the functionality that allows user programs to set the allotments of different
scheduling priorities.
• Write a system call that sets the allotments of a scheduling priority.
• Write the corresponding system call user space wrapper function, and declare it in
“user.h”. The wrapper function’s prototype should be:
int mlfq_set_allotment(int priority, int allotment);
– Description: This function sets allotment of the “priority” (first arg) to “allotment”
(second arg).
– Arguments: This function takes two arguments.
– priority: the scheduling priority of which the allotment is to set.
– allotment: the new allotment value.
– Return value: On successfully setting the allotment for the priority, this function
returns 0. The function returns -1 on failures.
.
(3) Implement the MLFQ scheduling policy, remove the stub functions defined at the beginning
of schdtest.c (by simply removing the “STUB FUNCS” macro definition), and test your
implementation.
Note: Your implementation should keep the patch that fixes the always-100% CPU utilization
problem. If your code causes the problem to re-occur, 10 points off (see the 4th point in the
“Grading” section for details).
2.2.3 Tips
You may have noticed that the MLFQ scheduling policy you are going to implement is referred
to as MLFQ-like scheduling policy in the above description. The difference between the MLFQ
policy you will be implementing in this project and the MLFQ policy you learned in class is that
the MLFQ policy in this project does not mandate using different queues for different scheduling
priorities. Therefore, you are allowed to keep the current single-queue design intact in xv6 and
implement the required MLFQ logic. In other words, here the ”Q” is not necessarily physical
queues that are backed by queue data structures. It can be logical queues as well.
Learning in xv6 code how process scheduling context switches happen will be helpful for implementing the functionality of pausing process scheduling.
(Continue to next page.)
8
3 Process scheduling in xv6 - Q&A (30 points)
Answer the following questions about process scheduling implementation.
Q1: (10 points) Does xv6 kernel use cooperative approach or non-cooperative approach to gain
control while a user process is running? Explain how xv6’s approach works using xv6’s code.
Q2: (10 points) After fork() is called, why does the parent process run before the child process
in most of the cases? But in some cases, the child does run first. In what scenario will the
child process run before the parent process after fork()?
Q3: (10 points) When the scheduler de-schedules an old process and schedules a new process, it
saves the context (i.e., the CPU registers) of the old process and load the context of the new
process. Show the code which performs these context saving/loading operations. Show how
this piece of code is reached when saving the old process’s and loading the new process’s
context.
Key in your answers to the above questions with any the editor you prefer, export them in a PDF
file named “xv6-sched-mechanisms.pdf”, and submit the file to the assignment link in Brightspace.
9
4 Submit your work
Once your code in your GitHub private repository is ready for grading, submit a text
file named “DONE” (and the previous “xv6-sched-mechanisms.pdf”) to the assignment
link in Brightspace. We will not be able to know your code in your GitHub repository is ready for grading until we see the ”DONE” file in Brightspace. Forgetting to
submit the ”DONE” file will lead to a late penalty applied, as specified later in the
”Grading” section.
Important notes:
• If you have referred to any form of online materials or resources when completing this project
(code and Q&A), please state all the references in this “DONE” file. Failure to do so, once
detected, will lead to zero points for the entire project and further penalties depending on
the severity of the violation.
• To encourage (discourage) early (late) starts on this project, the instructor and the TAs will
not respond to questions related to the project on the due date.
Suggestion: Test your code thoroughly on a CS machine before submitting.
10
5 Grading
The following are the general grading guidelines for this and all future projects.
(1) The code in your repository will not be graded until a “DONE” file is submitted
to Brightspace.
(2) The submission time of the “DONE” file shown on the Brightspace system will be used to
determine if your submission is on time or to calculate the number of late days. Late penalty
is 10% of the points scored for each of the first two days late, and 20% for each of the days
thereafter.
(3) If you are to compile and run the xv6 system on the department’s remote cluster, remember to
use the baseline xv6 source code provided by our GitHub classroom. Compiling and running
xv6 source code downloaded elsewhere can cause 100% CPU utilization on QEMU.
Removing the patch code from the baseline code will also cause the same problem. So make
sure you understand the code before deleting them.
If you are reported by the system administrator to be running QEMU with 100% CPU utilization on QEMU, 10 points off.
(4) If the submitted patch cannot successfully patched to the baseline source code, or the patched
code does not compile:
1 TA will try to fix the problem (for no more than 3 minutes);
2 if (problem solved)
3 1%-10% points off (based on how complex the fix is, TA’s discretion);
4 else
5 TA may contact the student by email or schedule a demo to fix the problem;
6 if (problem solved)
7 11%-20% points off (based on how complex the fix is, TA’s discretion);
8 else
9 All points off;
So in the case that TA contacts you to fix a problem, please respond to TA’s email promptly
or show up at the demo appointment on time; otherwise the line 9 above will be effective.
(5) If the code is not working as required in the project spec, the TA should take points based on
the assigned full points of the task and the actual problem.
(6) Lastly but not the least, stick to the collaboration policy stated in the syllabus:
you may discuss with you fellow students, but code should absolutely be kept
private. Any kind of cheating will result in zero point on the project, and further
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:TCS3393 DATA MINING代做、代寫Python/Java編程
  • 下一篇:CS551J編程代寫、Java/c++程序設計代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美成人黄色小视频| 午夜久久资源| 国产精品午夜春色av| 久久天天综合| 亚洲视频综合| 亚洲毛片av| 悠悠资源网亚洲青| 国产精品理论片| 欧美韩日一区二区| 久久综合九色综合欧美狠狠| 香蕉精品999视频一区二区 | 欧美日韩大片| 久久久999| 欧美一区三区二区在线观看| 中国日韩欧美久久久久久久久| 国产一区在线视频| 国产欧美日韩综合| 国产精品丝袜91| 国产精品久久77777| 欧美日韩另类一区| 欧美极品在线视频| 欧美激情一区二区久久久| 巨乳诱惑日韩免费av| 久久蜜臀精品av| 久久影院午夜片一区| 久久久人成影片一区二区三区 | 亚洲欧美一区二区原创| 一本色道久久综合狠狠躁篇的优点 | 欧美www视频| 欧美福利视频| 欧美精品一区二区三区蜜臀| 欧美激情综合网| 欧美成人午夜影院| 欧美国产在线观看| 欧美日韩一区二区三区在线 | 欧美日韩国产区| 欧美顶级艳妇交换群宴| 欧美国产欧美亚洲国产日韩mv天天看完整| 久久国产精品毛片| 久久夜色精品国产噜噜av| 久久精品国产一区二区电影| 久久久青草婷婷精品综合日韩 | 尤物精品在线| 91久久久久久久久| 在线亚洲高清视频| 亚洲网站在线| 久久久国产一区二区| 美脚丝袜一区二区三区在线观看| 欧美成人精品一区二区| 欧美日韩国产不卡在线看| 国产精品久久久99| 在线不卡视频| 国产精品99久久久久久久久久久久 | 欧美在线观看视频在线| 欧美v日韩v国产v| 欧美性jizz18性欧美| 国产最新精品精品你懂的| 91久久香蕉国产日韩欧美9色| 亚洲一区黄色| 久久夜色精品国产欧美乱| 欧美日韩一区二区国产| 国产欧美精品va在线观看| 亚洲精品久久| 欧美一区日本一区韩国一区| 欧美国产日韩精品| 国产一级揄自揄精品视频| 99pao成人国产永久免费视频| 午夜亚洲视频| 欧美日韩精品| 亚洲欧洲美洲综合色网| 亚洲欧美色一区| 欧美精品国产精品| 一区二区在线视频| 欧美一区二区高清在线观看| 欧美日韩国产91| 亚洲国产精品久久久久秋霞影院| 亚洲欧美国产毛片在线| 欧美精品www| 在线成人激情黄色| 性欧美1819sex性高清| 欧美精品不卡| 亚洲国产老妈| 另类激情亚洲| 国产一区清纯| 午夜精品福利视频| 在线亚洲激情| 欧美日韩人人澡狠狠躁视频| 91久久在线播放| 免费成人在线视频网站| 国产日韩免费| 一本大道久久精品懂色aⅴ| 免费一级欧美在线大片| 韩国av一区二区三区在线观看 | 欧美日韩中文在线| 夜色激情一区二区| 欧美日韩视频| 9国产精品视频| 欧美日韩精品一区二区天天拍小说 | 欧美日韩a区| 正在播放亚洲| 国产精品久久影院| 亚洲性感美女99在线| 欧美视频在线观看| 一区二区三区产品免费精品久久75| 欧美精品久久久久a| 亚洲理论在线观看| 欧美老女人xx| 亚洲午夜视频在线观看| 国产精品日韩精品欧美精品| 午夜精品视频一区| 国产精自产拍久久久久久蜜| 亚洲欧美中文在线视频| 国产日韩综合| 麻豆精品视频在线| 99热免费精品在线观看| 国产精品拍天天在线| 欧美专区在线观看一区| 亚洲国产精品成人| 国产精品xxx在线观看www| 午夜精品久久久久久久99热浪潮| 国产日韩亚洲| 欧美激情一区| 性欧美大战久久久久久久免费观看| 国内偷自视频区视频综合| 欧美国产亚洲精品久久久8v| 亚洲综合999| 亚洲电影在线观看| 国产精品va在线播放| 久久久在线视频| 在线视频欧美一区| 在线看无码的免费网站| 欧美日韩亚洲91| 久久国产精品一区二区三区| 亚洲看片免费| 在线观看日韩专区| 国产精品卡一卡二卡三| 玖玖视频精品| 欧美在线二区| 亚洲视频电影在线| 亚洲大黄网站| 国产九色精品成人porny| 欧美精品色一区二区三区| 久久黄色小说| 亚洲欧美清纯在线制服| 91久久精品一区二区别| 国产尤物精品| 国产精品视频免费在线观看| 欧美国产高潮xxxx1819| 久久嫩草精品久久久精品一| 亚洲综合99| 一本大道久久a久久综合婷婷| 亚洲第一精品夜夜躁人人躁| 国产区欧美区日韩区| 欧美日韩亚洲视频一区| 欧美巨乳波霸| 欧美交受高潮1| 欧美金8天国| 欧美精品观看| 欧美黄在线观看| 欧美精品色一区二区三区| 久久男人资源视频| 久久视频国产精品免费视频在线| 午夜精品婷婷| 欧美在线视频观看| 欧美一区二区三区免费大片| 亚洲欧美日韩综合| 翔田千里一区二区| 久久国产婷婷国产香蕉| 亚洲一区二区视频在线| 在线综合视频| 午夜久久久久久| 欧美一区二区三区久久精品| 亚洲欧美一区二区原创| 欧美尤物巨大精品爽| 久久99伊人| 狂野欧美激情性xxxx| 欧美高清视频一区二区| 欧美日韩国产欧| 国产精品视频| 一区二区视频免费在线观看| 亚洲电影免费观看高清完整版| 亚洲成人在线视频网站| 亚洲精品在线视频| 亚洲综合成人在线| 久久精品视频网| 欧美大片网址| 国产精品成人一区| 国产丝袜一区二区| 亚洲国产人成综合网站| 一本大道久久a久久精品综合| 亚洲一区二区三区精品在线| 久久成人精品一区二区三区| 欧美成人免费在线视频| 欧美日韩在线观看一区二区| 国产区欧美区日韩区| 亚洲电影激情视频网站| 亚洲无线一线二线三线区别av| 欧美中文字幕在线播放| 欧美电影免费观看网站| 国产目拍亚洲精品99久久精品 |