99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CEG5301代做、MATLAB編程語言代寫

時間:2024-03-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CEG5301 Machine Learning with Applications:
Part I: Homework #3
Important note: the due date is 17/03/2024. Please submit the softcopy of your report
to the submission folder in CANVAS. Late submission is not allowed unless it is well
justified. Please supply the MATLAB code or Python Code in your answer if computer
experiment is involved.
Please note that the MATLAB toolboxes for RBFN and SOM are not well developed.
Please write your own codes to implement RBFN and SOM instead of using the
MATLAB toolbox.
Q1. Function Approximation with RBFN (10 Marks)
Consider using RBFN to approximate the following function:
𝑦𝑦 = 1.2 sin(𝜋𝜋𝜋𝜋) − cos(2.4𝜋𝜋𝜋𝜋) , 𝑓𝑓𝑓𝑓𝑓𝑓 w**9;w**9; ∈ [−1.6, 1.6]
The training set is constructed by dividing the range [−1.6, 1.6] using a uniform step
length 0.08, while the test set is constructed by dividing the range [−1.6, 1.6] using
a uniform step length 0.01. Assume that the observed outputs in the training set are
corrupted by random noise as follows.
𝑦𝑦(𝑖𝑖) = 1.2 sin 𝜋𝜋𝜋𝜋(𝑖𝑖)  − cos 2.4𝜋𝜋𝜋𝜋(𝑖𝑖)  + 0.3𝑛𝑛(𝑖𝑖)
where the random noise 𝑛𝑛(𝑖𝑖) is Gaussian noise with zero mean and stand deviation of
one, which can be generated by MATLAB command randn. Note that the test set is not
corrupted by noises. Perform the following computer experiments:
a) Use the exact interpolation method (as described on pages 17-26 in the slides of
lecture five) and determine the weights of the RBFN. Assume the RBF is Gaussian
function with standard deviation of 0.1. Evaluate the approximation performance of
the resulting RBFN using the test set.
 (3 Marks)
b) Follow the strategy of “Fixed Centers Selected at Random” (as described on page 38
in the slides of lecture five), randomly select 20 centers among the sampling points.
Determine the weights of the RBFN. Evaluate the approximation performance of the
resulting RBFN using test set. Compare it to the result of part a).
(4 Marks)
c) Use the same centers and widths as those determined in part a) and apply the
regularization method as described on pages 43-46 in the slides for lecture five. Vary
the value of the regularization factor and study its effect on the performance of RBFN.
(3 Marks)
2
Q2. Handwritten Digits Classification using RBFN (20 Marks)
In this task, you will build a handwritten digits classifier using RBFN. The training data
is provided in MNIST_M.mat. Each binary image is of size 28*28. There are 10
classes in MNIST_M.mat; please select two classes according to the last two different
digits of your matric number (e.g. A0642311, choose classes 3 and 1; A1234567,
choose classes 6 and 7). The images in the selected two classes should be assigned the
label “1” for this question’s binary classification task, while images in all the remaining
eight classes should be assigned the label “0”. Make sure you have selected the correct
2 classes for both training and testing. There will be some mark deduction for wrong
classesselected. Please state your handwritten digit classes for both training and testing.
In MATLAB, the following code can be used to load the training and testing data:
-------------------------------------------------------------------------------------------------------
load mnist_m.mat;
% train_data  training data, 784x1000 matrix
% train_classlabel  the labels of the training data, 1x1000 vector
% test_data  test data, 784x250 matrix
% train_classlabel  the labels of the test data, 1x250 vector
-------------------------------------------------------------------------------------------------------
After loading the data, you may view them using the code below:
-------------------------------------------------------------------------------------------------------
tmp=reshape(train_data(:,column_no),28,28);
imshow(tmp);
-------------------------------------------------------------------------------------------------------
To select a few classes for training, you may refer to the following code:
-------------------------------------------------------------------------------------------------------
trainIdx = find(train_classlabel==0 | train_classlabel==1 | train_classlabel==2); % find the
location of classes 0, 1, 2
Train_ClassLabel = train_classlabel(trainIdx);
Train_Data = train_data(:,trainIdx);
-------------------------------------------------------------------------------------------------------
Please use the following code to evaluate:
-------------------------------------------------------------------------------------------------------
TrAcc = zeros(1,1000);
TeAcc = zeros(1,1000);
thr = zeros(1,1000);
TrN = length(TrLabel);
TeN = length(TeLabel);
for i = 1:1000
 t = (max(TrPred)-min(TrPred)) * (i-1)/1000 + min(TrPred);
 thr(i) = t;

TrAcc(i) = (sum(TrLabel(TrPred<t)==0) + sum(TrLabel(TrPred>=t)==1)) / TrN;
TeAcc(i) = (sum(TeLabel(TePred<t)==0) + sum(TeLabel(TePred>=t)==1)) / TeN;
end
3
plot(thr,TrAcc,'.- ',thr,TeAcc,'^-');legend('tr','te');
-------------------------------------------------------------------------------------------------------
TrPred and TePred are determined by TrPred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TrData(: , j)) Ү**;Ү**;
𝑖𝑖=0 and
TePred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TeData(: , j)) Ү**;Ү**;
𝑖𝑖=0 where Ү**;Ү**; is the number of hidden neurons.
TrData and TeData are the training and testing data selected based on your matric
number. TrLabel and TeLabel are the ground-truth label information (Convert to {0,1}
before use!).
You are required to complete the following tasks:
a) Use Exact Interpolation Method and apply regularization. Assume the RBF is
Gaussian function with standard deviation of 100. Firstly, determine the weights of
RBFN without regularization and evaluate its performance; then vary the value of
regularization factor and study its effect on the resulting RBFNs’ performance.
(6 Marks)

b) Follow the strategy of “Fixed Centers Selected at Random” (as described in page 38
of lecture five). Randomly select 100 centers among the training samples. Firstly,
determine the weights of RBFN with widths fixed at an appropriate size and compare
its performance to the result of a); then vary the value of width from 0.1 to 10000 and
study its effect on the resulting RBFNs’ performance.
(8 Marks)

c) Try classical “K-Mean Clustering” (as described in pages 39-40 of lecture five) with
2 centers. Firstly, determine the weights of RBFN and evaluate its performance; then
visualize the obtained centers and compare them to the mean of training images of each
class. State your findings.
(6 Marks)
4
Q3. Self-Organizing Map (SOM) (20 Marks)
a) Write your own code to implement a SOM that maps a **dimensional output layer
of 40 neurons to a “hat” (sinc function). Display the trained weights of each output
neuron as points in a 2D plane, and plot lines to connect every topological adjacent
neurons (e.g. the 2nd neuron is connected to the 1st and 3rd neuron by lines). The training
points sampled from the “hat” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
x = linspace(-pi,pi,400);
trainX = [x; sinc(x)];  2x400 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(3 Marks)
b) Write your own code to implement a SOM that maps a 2-dimensional output layer
of 64 (i.e. 8×8) neurons to a “circle”. Display the trained weights of each output neuron
as a point in the 2D plane, and plot lines to connect every topological adjacent neurons
(e.g. neuron (2,2) is connected to neuron (1,2) (2,3) (3,2) (2,1) by lines). The training
points sampled from the “circle” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
X = randn(800,2);
s2 = sum(X.^2,2);
trainX = (X.*repmat(1*(gammainc(s2/2,1).^(1/2))./sqrt(s2),1,2))';  2x800 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(4 Marks)
c) Write your own code to implement a SOM that clusters and classifies handwritten
digits. The training data is provided in Digits.mat. The dataset consists of images in 5
classes, namely 0 to 4. Each image with the size of 28*28 is reshaped into a vector and
stored in the Digits.mat file. After loading the mat file, you may find the 4 matrix/arrays,
which respectively are train_data, train_classlabel, test_data and test_classlabel. There
are totally 1000 images in the training set and 100 images in the test set. Please omit 2
classes according to the last digit of your matric number with the following rule:
omitted class1 = mod(the last digit, 5), omitted_class2 = mod(the last digit+1, 5). For
example, if your matric number is A06423**, ignore classes mod(7,5)=2 and
mod(8,5)=3; A1234569, ignore classes 4 and 0.
Thus, you need to train a model for a 3-classes classification task. Make sure you have
selected the correct 3 classes for both training and testing. There will be some mark
deduction for wrong classes selected. Please state your handwritten digit classes for
both training and testing.
After loading the data, complete the following tasks:
c-1) Print out corresponding conceptual/semantic map of the trained SOM (as
described in page 24 of lecture six) and visualize the trained weights of each output
neuron on a 10×10 map (a simple way could be to reshape the weights of a neuron
5
into a 28×28 matrix, i.e. dimension of the inputs, and display it as an image). Make
comments on them, if any.
(8 Marks)
c-2) Apply the trained SOM to classify the test images (in test_data). The
classification can be done in the following fashion: input a test image to SOM, and
find out the winner neuron; then label the test image with the winner neuron’s label
(note: labels of all the output neurons have already been determined in c-1).
Calculate the classification accuracy on the whole test set and discuss your
findings.
(5 Marks)
The recommended values of design parameters are:
1. The size of the SOM is 1×40 for a), 8×8 for b), 10×10 for c).
2. The total iteration number N is set to be 500 for a) & b), 1000 for c). Only the
first (self-organizing) phase of learning is used in this experiment.
3. The learning rate 𝜂𝜂(𝑛𝑛) is set as:
𝜂𝜂(𝑛𝑛) = 𝜂𝜂0 exp  − 𝑛𝑛
𝜏𝜏2
  , 𝑛𝑛 = 0,1,2, …
where 𝜂𝜂0 is the initial learning rate and is set to be 0.1, 𝜏𝜏2 is the time constant
and is set to be N.
4. The time-varying neighborhood function is:
ℎ𝑗𝑗,𝑖𝑖(w**9;w**9;)(𝑛𝑛) = exp  − 𝑑𝑑𝑗𝑗,𝑖𝑖
2
2ҵ**;ҵ**;(𝑛𝑛)2  , 𝑛𝑛 = 0,1,2, …
where 𝑑𝑑𝑗𝑗,𝑖𝑖 is the distance between neuron j and winner i, ҵ**;ҵ**;(𝑛𝑛) is the effective
width and satisfies:
ҵ**;ҵ**;(𝑛𝑛) = ҵ**;ҵ**;0 exp  − 𝑛𝑛
𝜏𝜏1
  , 𝑛𝑛 = 0,1,2, …
where ҵ**;ҵ**;0 is the initial effective width and is set according to the size of output
layer’s lattice, 𝜏𝜏1 is the time constant and is chosen as 𝜏𝜏𝑖𝑖 = Ү**;Ү**;
log(ҵ**;ҵ**;0)
.
Again, please feel free to experiment with other design parameters which may be
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP26020、代做c/c++,Java編程設計
  • 下一篇:代寫ACS130、代做C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          在线中文字幕不卡| 久久精品国内一区二区三区| 国产日韩精品久久| 欧美不卡在线视频| 欧美一区二区三区在线免费观看| 一区二区亚洲精品国产| 国产精品嫩草影院av蜜臀| 免费成人毛片| 欧美亚洲网站| 亚洲天堂第二页| 亚洲精品永久免费| 亚洲第一狼人社区| 国产亚洲女人久久久久毛片| 欧美日韩一区二区在线播放| 欧美国产日韩一区二区在线观看| 欧美一区二区性| 一区二区欧美日韩| 亚洲人成网站777色婷婷| 国产午夜精品理论片a级探花| 欧美日韩视频第一区| 欧美成年人在线观看| 久久久亚洲影院你懂的| 欧美在线二区| 久久国产日韩| 久久久久国产免费免费| 久久精品视频在线免费观看| 欧美中文字幕视频在线观看| 欧美在线观看视频| 久久都是精品| 久久免费黄色| 美女国产一区| 欧美大片在线观看| 欧美精品情趣视频| 欧美日韩一二三区| 欧美日韩一本到| 国产精品高潮呻吟久久| 国产精品乱人伦一区二区| 国产精品电影网站| 国产精品免费观看在线| 国产片一区二区| 国产专区精品视频| 亚洲国产欧美一区二区三区久久 | 影院欧美亚洲| 亚洲精品一区二区网址| 一区二区欧美亚洲| 亚洲欧美日韩网| 久久精品国产96久久久香蕉| 久久综合久久综合九色| 欧美jjzz| 国产精品乱子久久久久| 狠狠色狠狠色综合日日小说| 亚洲日本黄色| 亚洲欧美日韩综合国产aⅴ| 欧美一区二区三区播放老司机| 久久久久在线| 欧美日韩亚洲精品内裤| 国产综合色一区二区三区| 亚洲国产欧美日韩另类综合| 亚洲免费一区二区| 玖玖综合伊人| 国产精品久久久久久久浪潮网站| 精品999在线观看| 亚洲一区二区三区久久| 久久综合国产精品| 国产精品欧美一区二区三区奶水| 激情欧美一区二区三区在线观看| 一区二区av在线| 久久久亚洲成人| 欧美日韩免费一区二区三区视频 | 欧美午夜一区二区| 国内揄拍国内精品久久| 亚洲天堂男人| 欧美理论电影网| 黄色成人av网站| 亚洲综合色丁香婷婷六月图片| 免费试看一区| 国产一区再线| 一本久道综合久久精品| 久久视频精品在线| 国产日韩综合| 亚洲欧美日本国产专区一区| 欧美精品在线观看| 亚洲国产欧美在线| 久久伊人精品天天| 国产三级欧美三级| 亚洲女ⅴideoshd黑人| 欧美日韩免费视频| 一本色道久久精品| 欧美日韩精品欧美日韩精品| 亚洲观看高清完整版在线观看| 久久都是精品| 国产在线精品成人一区二区三区 | 亚洲资源av| 国产精品成人观看视频国产奇米| 日韩视频免费在线| 欧美另类久久久品| 亚洲人成网站777色婷婷| 欧美高清视频在线| 亚洲美女视频| 欧美日韩亚洲视频| 中文日韩在线| 国产精品看片你懂得| 亚洲一级二级| 国产视频欧美| 久久精品免费播放| 永久555www成人免费| 快射av在线播放一区| 亚洲国产精品免费| 欧美精品在线播放| 亚洲视频在线免费观看| 国产精自产拍久久久久久蜜| 先锋资源久久| 亚洲成色777777女色窝| 欧美久久久久久蜜桃| 在线一区二区三区做爰视频网站| 国产精品亚洲综合| 久久全国免费视频| 99精品热视频| 国产欧美日韩综合一区在线观看| 久久国产精品一区二区| 亚洲精品在线观| 国产精品亚洲欧美| 免费观看成人www动漫视频| 亚洲青色在线| 国产日韩欧美中文在线播放| 久久综合九色综合欧美就去吻 | 亚洲美女毛片| 国产伦精品一区二区三区照片91| 久久成人资源| 亚洲午夜女主播在线直播| 国产欧美日韩精品丝袜高跟鞋| 老巨人导航500精品| 亚洲视频欧洲视频| 一区在线观看| 国产精品一区一区| 欧美成人精品三级在线观看| 亚洲免费视频中文字幕| 亚洲人被黑人高潮完整版| 国产精品高潮视频| 欧美激情1区| 久久久精品国产一区二区三区| 99re热精品| 在线观看欧美日韩国产| 国产欧美日本| 欧美天堂亚洲电影院在线播放| 久久精品人人做人人爽电影蜜月| 在线视频欧美日韩精品| 今天的高清视频免费播放成人| 国产精品免费福利| 欧美激情中文字幕一区二区 | 久久夜色精品| 小黄鸭精品aⅴ导航网站入口| 亚洲乱码国产乱码精品精| 亚洲福利视频一区二区| 国产婷婷精品| 国产日韩高清一区二区三区在线| 欧美特黄一级| 欧美日韩精品免费观看| 欧美高清成人| 欧美高清视频| 免费日韩av| 免费成人高清| 嫩草成人www欧美| 免费欧美电影| 欧美/亚洲一区| 欧美成人久久| 欧美日韩大陆在线| 欧美区国产区| 国产精品国产成人国产三级| 欧美午夜寂寞影院| 国产精品久久久久久福利一牛影视| 欧美久久久久久久久| 欧美人交a欧美精品| 欧美女激情福利| 国产精品扒开腿爽爽爽视频 | 亚洲一区亚洲| 欧美一级夜夜爽| 久久久蜜桃一区二区人| 欧美xx视频| 欧美日韩高清在线| 国产精品入口日韩视频大尺度| 国产精品中文在线| 国产一区视频在线观看免费| 红桃视频欧美| 亚洲人成网站影音先锋播放| 夜夜嗨av一区二区三区四季av| 亚洲欧美韩国| 久久香蕉国产线看观看av| 欧美激情亚洲激情| 国产精品久久久一区麻豆最新章节| 国产精品一区二区a| 影音先锋久久久| 一本一本久久| 久久精品人人做人人爽| 欧美国产日韩a欧美在线观看| 欧美日韩亚洲91| 国产日韩欧美一区二区三区在线观看| 影音先锋久久| 亚洲永久精品大片| 欧美成人精品在线|