99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做COMP9020 程序 Assignment 1

時間:2024-02-28  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


COMP**20 Assignment 1 2024 Term 1

  Due: Thursday, 29th February, 18:00 (AEDT)

Submission is through inspera. Your assignment will be automatically submitted at the above due date. If you manually submit before this time, you can reopen your submission and con- tinue until the deadline.

If you need to make a submission after the deadline, please use this link to request an extension: https://www.cse.unsw.edu.au/ cs**20/extension_request.html. Unless you are granted Special Consideration, a lateness penalty of 5% of raw mark per 24 hours or part thereof for a maximum of 5 days will apply. You can request an extension up to 5 days after the deadline.

Answers are expected to be provided either:

• In the text box provided using plain text, including unicode characters and/or the built-in formula editor (diagrams can be drawn using the built-in drawing tool); or

• as a pdf (e.g. using LATEX) – each question should be submitted on its own pdf, with at most one pdf per question.

Handwritten solutions will be accepted if unavoidable, but that we don’t recommend this ap- proach as the assessments are designed to familiarise students with typesetting mathematics in preparation for the final exam and for future courses.

Discussion of assignment material with others is permitted, but the work submitted must be your own in line with the University’s plagiarism policy.

  Problem 1

For x,y ∈ Z, we define the set

Sx,y ={mx+ny:m,n∈Z}

a) Provethatforallm,n,x,y,z∈Z,ifz|xandz|ythenz|(mx+ny).

(33 marks)

 b) Prove that 2 is the smallest positive element of S4,6.

Hint: To show that the element is the smallest, you will need to show that some values cannot be obtained.

Use the fact proven in part (a)

c) Find the smallest positive element of S−6,15.

For the following questions let d = gcd(x, y) and z be the smallest positive number in Sx,y, or 0 if there are no positive numbers in Sx,y.

d) ProvethatSx,y ⊆{n∈Z:d|n}.

e) Prove that d ≤ z.

f) Prove that z|x and z|y.

Hint: consider (x%z) and (y%z)

g) Prove that z ≤ d.

h) Using the answers from (e) and (g), explain why Sx,y ⊇ {n ∈ Z : d|n}

4 marks

4 marks

4 marks

3 marks

8 marks

2 marks

4 marks

1

4 marks

 

 Remark

The result that there exists m, n ∈ Z such that mx + ny = gcd(x, y) is known as Bézout’s identity. Two useful consequences of Bézout’s identity are:

• If c|x and c|y then c| gcd x, y (i.e. gcd(x, y) is a multiple of all common factors of x and y) • If gcd(x, y) = 1, then there is a unique w ∈ [0, y) such that xw =(y) 1 (i.e. multiplicative

inverses exist in modulo y, if x is coprime with y)

Problem 2 (16 marks) Proof Assistant: https://cgi.cse.unsw.edu.au/∼cs**20/cgi-bin/proof_assistant?A1

Prove, using the laws of set operations (and any results proven in lectures), the following identities hold for all sets A, B, C.

   a) (Annihilation) A ∩ ∅ = ∅

b) (A\C)∪(B\C) = (A∪B)\C

c) A ⊕ U = Ac

d) (DeMorgan’slaw)(A∩B)c =Ac∪Bc

4 marks

4 marks

4 marks

4 marks

4 marks

4 marks

8 marks

6 marks

 Problem 3

Let Σ = {a, b}, and let

(26 marks)

d) Prove that:

L2 ∩ L3 = (Σ=6)∗

negative even number, prove that:

L2L3 =Σ∗\{a,b}

L2 = (Σ=2)∗

and L3 = (Σ=3)∗.

a) Give a complete description of Σ=2 and Σ=3; and an informal description of L2 and L3.

b) Prove that for all w ∈ L1, length(w) =(2) 0.

c) Show that Σ2 and Σ3 give a counter-example to the proposition that for all sets X,Y ⊆ Σ∗, (X ∩ Y)∗ = X∗ ∩ Y∗.

e) Using the observation that every natural number n ≥ 2 is either even or 3 more than a non-

2

4 marks

 

Advice on how to do the assignment

Collaboration is encouraged, but all submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Dishonesty and Plagiarism” policies.

• Assignments are to be submitted in inspera.

• When giving answers to questions, we always would like you to prove/explain/motivate your answers. You are being assessed on your understanding and ability.

• Be careful with giving multiple or alternative answers. If you give multiple answers, then we will give you marks only for your worst answer, as this indicates how well you understood the question.

• Some of the questions are very easy (with the help of external resources). You may make use of external material provided it is properly referenced1 – however, answers that depend too heavily on external resources may not receive full marks if you have not adequately demonstrated ability/understanding.

• Questions have been given an indicative difficulty level:

Credit Distinction High distinction

This should be taken as a guide only. Partial marks are available in all questions, and achievable

by students of all abilities.

    Pass

 1Proper referencing means sufficient information for a marker to access the material. Results from the lectures or textbook can be used without proof, but should still be referenced.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:CSC173代做、Java編程設計代寫
  • 下一篇:莆田鞋正確拿貨方式:盤點十個莆田鞋拿貨渠道
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久久综合网| 欧美激情综合网| 麻豆乱码国产一区二区三区| 国产精品国产三级国产专播品爱网| 亚洲欧美福利一区二区| 亚洲香蕉在线观看| 久久av二区| 你懂的网址国产 欧美| 欧美日韩三级在线| 国产精品卡一卡二| 欧美韩日一区二区三区| 国产精品久久久久国产a级| 久久精品99国产精品| 久久综合九色综合欧美就去吻| 久久亚洲私人国产精品va媚药| 麻豆精品在线视频| 欧美日韩一区二区视频在线| 国产精品一级在线| 亚洲第一黄色网| 亚洲视频在线播放| 蜜桃视频一区| 国产精品一级久久久| 亚洲国产欧美一区二区三区久久| 亚洲午夜国产一区99re久久 | 欧美精彩视频一区二区三区| 欧美午夜不卡在线观看免费 | 欧美二区在线观看| 国产欧美日韩在线视频| 欧美日韩另类综合| 一区二区视频免费完整版观看| 国产精品一区二区在线观看| 永久91嫩草亚洲精品人人| 一区精品在线播放| 亚洲一区高清| 欧美日韩一区二区精品| 亚洲成色精品| 欧美一级欧美一级在线播放| 欧美精品手机在线| 亚洲激情午夜| 久久久久欧美精品| 亚洲第一成人在线| 午夜欧美大尺度福利影院在线看| 欧美成人一区二区三区| 国产伊人精品| 欧美主播一区二区三区美女 久久精品人| 欧美成人中文字幕在线| 欧美大片18| 一区二区三区在线看| 亚洲一区二区三区在线观看视频| 欧美国产日本高清在线| 国内精品视频一区| 1000部精品久久久久久久久| 欧美一区二区三区播放老司机| 欧美午夜理伦三级在线观看| 宅男噜噜噜66一区二区| 欧美久久久久免费| 亚洲免费大片| 欧美日韩精品国产| 99国产精品99久久久久久粉嫩| 欧美久久电影| 一本久道久久久| 欧美特黄视频| 午夜国产精品视频免费体验区| 欧美中文字幕第一页| 国产精品永久在线| 欧美专区一区二区三区| 国产亚洲第一区| 久久久久成人网| 亚洲大胆在线| 欧美日韩在线高清| 伊人精品在线| 欧美精品国产| 一区二区不卡在线视频 午夜欧美不卡在| 欧美久久成人| 午夜国产欧美理论在线播放| 国产精品普通话对白| 欧美专区中文字幕| 精品动漫3d一区二区三区免费| 久久蜜桃香蕉精品一区二区三区| 亚洲国产精品久久| 欧美日韩国产大片| 欧美一级在线播放| 伊人久久久大香线蕉综合直播 | 欧美日韩久久不卡| 亚洲欧美精品伊人久久| 国产一区自拍视频| 欧美另类专区| 久久av二区| 亚洲精品影院| 久久久国产一区二区| 亚洲精品在线一区二区| 国产精品一区二区三区久久久| 久久久91精品| 亚洲午夜激情| 136国产福利精品导航| 欧美日韩一区二区三区在线观看免| 午夜在线一区二区| 91久久精品一区二区别| 国产精品久久久久久久午夜| 亚洲欧洲日本mm| 国产模特精品视频久久久久 | 国内视频精品| 国产精品护士白丝一区av| 久久视频国产精品免费视频在线| 国产欧美一区二区三区久久| 欧美激情一区二区三区成人 | 99re这里只有精品6| 国产欧美日韩三级| 午夜宅男久久久| 亚洲欧洲在线视频| 精品二区视频| 国产日本欧美一区二区三区在线| 亚洲综合日韩| 一区二区三区欧美| 在线免费观看日韩欧美| 国产日韩欧美91| 国产精品毛片一区二区三区| 欧美激情精品久久久久久黑人| 久久嫩草精品久久久久| 一区二区三区在线视频观看| 国产精品第2页| 欧美a一区二区| 老司机一区二区| 久久男女视频| 久久久噜噜噜| 久久精品国产亚洲5555| 欧美一区二区在线| 欧美一区二区黄色| 午夜精品视频在线| 亚洲免费在线看| 午夜精品国产| 欧美一区二区三区婷婷月色 | 亚洲免费在线视频一区 二区| 亚洲卡通欧美制服中文| 亚洲精品人人| 国产美女一区| 国产偷国产偷亚洲高清97cao| 国产精品日韩久久久| 国产欧美短视频| 国产亚洲一级| 亚洲电影在线免费观看| 亚洲激情综合| 一区二区高清在线观看| 一区二区三区高清| 亚洲香蕉网站| 久久精品99国产精品日本| 久久激情网站| 欧美风情在线观看| 欧美精品免费观看二区| 欧美日韩一区三区| 国产欧美日韩在线视频| 激情久久婷婷| 99re热精品| 小处雏高清一区二区三区| 久久成人免费日本黄色| 免费看的黄色欧美网站| 欧美视频一区二区三区在线观看| 欧美天天综合网| 国产一区高清视频| 亚洲精品国产欧美| 国产综合久久久久久| 亚洲国产精品久久久| 99热这里只有成人精品国产| 午夜精品久久久久99热蜜桃导演| 午夜国产一区| 欧美国产免费| 久久久噜噜噜久久中文字免| 欧美freesex交免费视频| 国产精品扒开腿爽爽爽视频| 国产亚洲女人久久久久毛片| 亚洲国产婷婷香蕉久久久久久| 在线亚洲精品福利网址导航| 久久久久在线观看| 欧美日韩在线播放一区二区| 国产一区二区三区自拍 | 欧美v日韩v国产v| 国产精品一区二区你懂得| 亚洲国产精品久久久久久女王| 亚洲欧美精品中文字幕在线| 欧美国产第二页| 国产亚洲欧洲| 亚洲网在线观看| 欧美成人午夜| 很黄很黄激情成人| 亚洲综合久久久久| 欧美日韩一区二区在线播放| 激情久久久久久| 午夜在线一区二区| 篠田优中文在线播放第一区| 欧美日韩国产在线| 亚洲国产福利在线| 亚洲精品黄色| 美女脱光内衣内裤视频久久影院 | 欧美日韩美女一区二区| 韩国亚洲精品| 欧美主播一区二区三区| 国产精品久久国产精麻豆99网站| 亚洲三级观看| 欧美成人黑人xx视频免费观看| 国产一区二区三区四区三区四|