99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Project 1: 3D printer materials estimation

時間:2024-02-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:self-signed certificate.代做、代寫Java/c++設計編程
  • 下一篇:代做CSE 6242、Java/c++編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲一区二区三区四区在线免费观看 | 狠狠色狠狠色合久久伊人| av电影天堂一区二区在线 | 亚洲成人午夜电影| 欧美人牲a欧美精品| 九一九一国产精品| 国产精品乱码人人做人人爱| 一本色道a无线码一区v| 五月婷婷色综合| 欧美精品一区二区三区在线| 不卡免费追剧大全电视剧网站| 亚洲精品视频观看| 精品久久久久久亚洲综合网| 成人免费福利片| 五月婷婷综合激情| 国产精品卡一卡二卡三| 91精品国产综合久久精品app| 国产原创一区二区| 亚洲大片精品永久免费| 国产婷婷色一区二区三区四区| 在线免费观看成人短视频| 久草热8精品视频在线观看| 日韩毛片精品高清免费| 精品国产123| 91麻豆精品国产自产在线 | 欧美大胆一级视频| 在线视频一区二区三| 国产在线精品不卡| 日韩电影在线免费看| 中文字幕欧美国产| 日韩一区二区三区在线观看| 91亚洲男人天堂| 国产精品888| 另类综合日韩欧美亚洲| 一区二区三区四区激情| 中文字幕不卡在线播放| 精品美女被调教视频大全网站| 91电影在线观看| 91在线播放网址| 成人午夜视频在线| 国产乱码一区二区三区| 激情五月婷婷综合| 极品瑜伽女神91| 美国精品在线观看| 日韩在线一二三区| 亚洲v中文字幕| 亚洲国产三级在线| 亚洲午夜在线视频| 一区二区三区毛片| 亚洲在线视频一区| 亚洲国产成人av| 亚洲r级在线视频| 亚洲一区二区视频在线| 亚洲精品视频一区| 亚洲一区二区三区激情| 一区二区三区在线免费视频| 亚洲精品视频在线观看网站| 亚洲美女一区二区三区| 亚洲免费在线视频一区 二区| 国产精品萝li| 亚洲激情五月婷婷| 亚洲1区2区3区视频| 三级欧美在线一区| 蜜臀av性久久久久蜜臀aⅴ流畅 | 欧美日韩国产大片| 91麻豆精品久久久久蜜臀| 日韩欧美一区二区久久婷婷| 7777精品伊人久久久大香线蕉| 欧美电影在哪看比较好| 日韩欧美国产高清| 国产精品乱码人人做人人爱| 一区二区三区四区视频精品免费| 亚洲1区2区3区视频| 麻豆精品一区二区三区| 国产91丝袜在线观看| 色综合久久久久综合体桃花网| 欧美日韩色一区| 久久无码av三级| 欧美国产精品一区二区三区| 亚洲人一二三区| 美女网站视频久久| 成人av免费网站| 制服丝袜日韩国产| 中文字幕一区日韩精品欧美| 日日骚欧美日韩| 国产69精品久久99不卡| 在线观看免费成人| 国产亚洲精久久久久久| 亚洲mv大片欧洲mv大片精品| 国产一区二区三区在线看麻豆| 91看片淫黄大片一级| 精品sm捆绑视频| 亚洲激情图片qvod| 国产精品亚洲综合一区在线观看| 日本二三区不卡| 欧美激情中文不卡| 日韩av电影一区| 97久久精品人人澡人人爽| 日韩美女视频在线| 亚洲电影激情视频网站| 91天堂素人约啪| 国产日韩欧美亚洲| 蜜臀av一级做a爰片久久| 91免费视频大全| 国产精品你懂的| 国产成人免费视频网站 | 免费成人在线网站| 日本韩国一区二区三区视频| 久久精品一区二区| 国内久久婷婷综合| 日韩一区二区电影网| 亚洲国产乱码最新视频 | 久久久久综合网| 欧美a一区二区| 欧美日韩视频在线第一区| 亚洲乱码国产乱码精品精小说 | 欧美老肥妇做.爰bbww视频| 欧美国产成人在线| 狠狠色伊人亚洲综合成人| 欧美日韩中文字幕一区二区| 亚洲自拍都市欧美小说| 97se亚洲国产综合自在线观| 国产精品乱子久久久久| 大桥未久av一区二区三区中文| 26uuu另类欧美亚洲曰本| 激情六月婷婷综合| 精品国产髙清在线看国产毛片| 奇米影视一区二区三区小说| 7777精品久久久大香线蕉| 日韩在线一区二区三区| 91精品婷婷国产综合久久性色| 日韩精品一级二级 | 不卡视频在线看| 国产日产欧美一区| 国产成人免费视频精品含羞草妖精| 久久精品一区二区三区不卡| 福利一区二区在线观看| 中文字幕在线观看一区二区| 色婷婷综合久久久中文一区二区| 亚洲美女在线一区| 在线电影欧美成精品| 激情五月激情综合网| 中文字幕 久热精品 视频在线 | 26uuu欧美| 国产精品亚洲专一区二区三区| 7777精品伊人久久久大香线蕉最新版| 综合网在线视频| 欧美日韩高清一区二区不卡| 蜜桃视频一区二区三区在线观看| 久久久无码精品亚洲日韩按摩| 成人app在线观看| 亚洲地区一二三色| 精品国内片67194| 成人av免费观看| 日韩国产一二三区| 国产校园另类小说区| 91久久线看在观草草青青| 美女被吸乳得到大胸91| 国产精品日产欧美久久久久| 欧美疯狂性受xxxxx喷水图片| 国产精品影视在线| 亚洲国产一区视频| 欧美国产欧美亚州国产日韩mv天天看完整| 在线欧美日韩精品| 国产精品资源在线观看| 亚洲第一电影网| 欧美激情一区二区三区蜜桃视频| 欧美色区777第一页| 国产成人精品在线看| 日产精品久久久久久久性色| 综合网在线视频| 国产午夜精品一区二区三区视频| 欧美精品tushy高清| 成人激情午夜影院| 精品亚洲免费视频| 亚洲成人动漫在线观看| 国产精品初高中害羞小美女文| 91麻豆精品国产91久久久更新时间| 成人免费视频播放| 国产一区二区91| 日韩avvvv在线播放| 亚洲国产一区二区在线播放| 亚洲欧洲成人自拍| 久久综合成人精品亚洲另类欧美 | 久久久www成人免费毛片麻豆| 欧美日韩国产首页| 不卡的电视剧免费网站有什么| 奇米四色…亚洲| 亚洲成人精品一区二区| 亚洲精品国产a久久久久久 | 久久久久9999亚洲精品| 欧美一区二区三区爱爱| 欧美日产国产精品| 欧美另类z0zxhd电影| 欧美性感一区二区三区| 91丨九色porny丨蝌蚪| 91视频观看免费| 在线看一区二区| 欧美日韩一卡二卡三卡| 欧美不卡一区二区三区|