99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Project 1: 3D printer materials estimation

時間:2024-02-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:self-signed certificate.代做、代寫Java/c++設計編程
  • 下一篇:代做CSE 6242、Java/c++編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲成人在线| 欧美日韩精品二区第二页| 亚洲三级色网| 国产视频精品xxxx| 欧美剧在线观看| 久久久久久九九九九| 中国av一区| 亚洲美女黄网| 亚洲欧洲三级电影| 精品二区久久| 国产一区91| 国产日本欧美在线观看| 国产精品久久久久久福利一牛影视| 欧美成人亚洲| 久久资源在线| 久久在线精品| 久久亚洲一区二区| 久久蜜臀精品av| 久久久久久有精品国产| 久久精品日韩欧美| 久久精品国产亚洲精品 | 亚洲欧美激情视频| 亚洲精品视频一区| 亚洲精品综合在线| 亚洲日韩中文字幕在线播放| 亚洲国产二区| 亚洲精品日本| 99国产精品视频免费观看| 亚洲免费观看在线视频| 夜夜嗨av一区二区三区中文字幕| 亚洲二区在线| 亚洲国产婷婷| 一区二区三区导航| 亚洲婷婷综合色高清在线| 99伊人成综合| 亚洲欧美综合网| 久久久av水蜜桃| 免费成人美女女| 欧美成人激情视频| 欧美日韩国产123| 国产精品青草综合久久久久99| 国产精品爽爽ⅴa在线观看| 国产区二精品视| 一区二区三区在线免费视频| 亚洲国内欧美| 亚洲性xxxx| 久久久久亚洲综合| 欧美日韩另类丝袜其他| 欧美激情a∨在线视频播放| 欧美精品国产精品| 国产精品一区二区三区久久久 | 亚洲一区图片| 久久久噜噜噜久久中文字幕色伊伊| 老司机成人在线视频| 欧美日韩精品一区二区| 国产一区二区三区在线观看视频 | 亚洲精品一区二区三区av| 午夜伦理片一区| 毛片基地黄久久久久久天堂| 欧美日韩一二区| 有码中文亚洲精品| 亚洲一区二区伦理| 老司机精品视频一区二区三区| 欧美日本亚洲韩国国产| 黄色国产精品一区二区三区| 日韩系列欧美系列| 久久青青草综合| 国产欧美日本| 一区二区三区高清视频在线观看| 欧美专区18| 国产精品免费一区二区三区在线观看| 影院欧美亚洲| 欧美一区二区福利在线| 欧美国产综合视频| 黄色亚洲免费| 久久av在线看| 国产伦精品一区二区三区免费迷 | 国产欧美一区二区三区另类精品 | 国产精品成人免费| 最新国产精品拍自在线播放| 久久精品国产精品亚洲精品| 国产精品成人午夜| 99精品99久久久久久宅男| 嫩草国产精品入口| 在线电影国产精品| 久久免费精品日本久久中文字幕| 国产女主播一区| 午夜久久久久| 国产精品一区久久久| 中文日韩在线| 国产精品久久久久久模特| 99精品99| 国产精品v亚洲精品v日韩精品| 亚洲三级免费电影| 欧美刺激午夜性久久久久久久| 激情欧美一区二区三区| 久久精品一区蜜桃臀影院| 国产视频一区在线观看| 久久精品国产综合精品| 国产日韩在线亚洲字幕中文| 先锋a资源在线看亚洲| 欧美日韩一区二区三区免费看| 亚洲免费激情| 国产精品xxx在线观看www| 亚洲一区黄色| 国产女人水真多18毛片18精品视频 | 欧美精品一区二区三区在线播放| 亚洲福利精品| 欧美日韩伦理在线免费| 亚洲一区中文| 国产亚洲欧洲997久久综合| 久久精品久久99精品久久| 精品不卡在线| 欧美日韩高清不卡| 亚洲一区二区三区777| 国产亚洲网站| 欧美极品aⅴ影院| 亚洲一区欧美二区| 伊甸园精品99久久久久久| 午夜精品久久久久久久白皮肤| 国产精品影音先锋| 老司机67194精品线观看| 亚洲精品国产拍免费91在线| 欧美亚一区二区| 久久高清国产| 亚洲人成小说网站色在线| 国产精品草草| 每日更新成人在线视频| 99精品视频免费观看视频| 国产视频一区在线观看一区免费| 欧美成年人在线观看| 亚洲视频二区| 在线看视频不卡| 国产精品视频免费一区| 欧美 亚欧 日韩视频在线| 午夜精品久久久久久久男人的天堂 | 亚洲国产精品成人va在线观看| 国产精品久久久久久久久借妻 | 欧美日本久久| 久久婷婷亚洲| 性一交一乱一区二区洋洋av| 亚洲毛片一区二区| 在线播放日韩| 国产精品免费电影| 欧美国产日韩精品| 久久精品一本| 久久不见久久见免费视频1| 一区二区三区www| 亚洲电影免费| 韩国自拍一区| 国内成人精品2018免费看| 国产精品一区二区欧美| 欧美视频一区二区| 欧美日韩视频| 欧美日韩精品久久久| 欧美精品久久一区| 免费在线一区二区| 美女精品视频一区| 久久久欧美精品| 久久视频精品在线| 欧美在线一二三区| 久久成人精品电影| 欧美亚洲一区二区在线| 亚洲国产cao| 在线观看欧美黄色| 亚洲国产一区视频| 91久久精品网| 在线亚洲国产精品网站| 一本色道久久综合一区| 在线综合亚洲| 性色av一区二区怡红| 欧美夜福利tv在线| 久久欧美中文字幕| 免费精品视频| 欧美日本一区二区三区| 欧美精品99| 欧美日韩在线三级| 国产精品草草| 国产日韩在线看片| 国产一区二区三区成人欧美日韩在线观看| 国产欧美日韩激情| 国产亚洲在线观看| 在线免费不卡视频| 99精品99| 午夜欧美大尺度福利影院在线看| 欧美在线免费观看| 裸体女人亚洲精品一区| 欧美激情视频给我| 国产精品免费久久久久久| 国产亚洲欧美另类一区二区三区| 精品成人久久| 99精品热视频只有精品10| 亚洲欧美另类中文字幕| 久久人人超碰| 国产精品国产成人国产三级| 国产视频自拍一区| 亚洲精品在线观| 先锋影音一区二区三区| 欧美国产欧美亚洲国产日韩mv天天看完整 | 亚洲激情午夜|