合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫MLDS 421: Data Mining

        時間:2024-02-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


        Individual Assignment (100 points)

        Instructions:

        • Submit the paper review as a word or pdf file.

        • Submit code as a Python notebook (.ipynb) file along with the HTML version.

        • Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

        1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

        2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

        • Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

        • Use the elbow method to find an appropriate value for k

        • Use the silhouette plot to evaluate your clusters

        • Re-cluster the data to see if you can improve your results

        • Perform PCA on the original dataset and retain the most important PCs.

        • Run K-means on the PCA output, compare results with respect to cluster quality and time taken

        3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

        • Agglomerative hierarchical clustering (number of clusters, linkage criterion)

        • Density-based clustering (DBSCAN) (eps, minPts)

        • Model-based clustering (GMM) (number of clusters)

        4. Data mining and Cluster analysis of the following dataset (40)

        https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

        The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

        As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

        • Review and understand the structure of the data.

        o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

        • Data Transformation

        o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

        • Exploratory Data Analysis (10)

        o Create statistical summaries.

        o Create boxplots, correlation/pairwise plots.

        o Perform basic outlier analysis.

        • Clustering (15)

        o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

        o List the various clustering algorithm(s) you’d use and why:

        o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

        o Apply the above algorithms to the filtered dataset based on your plan.

        o Report on the quality of the clusters, pros/cons, and summarize your findings.

        • Bias/Fairness Questions (15)

        Data

        o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

        o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

        o Determine feature groupings that are relevant for your analysis and explain your choices.

        o Do you detect bias in the data?

        o Present the results visually to show salient insights with respect to bias.

        o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

        Modeling

        o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

        o Explain the reasoning for the groups that you selected for the fairness metrics.

        o Compare the fairness metrics for the different groups.

        o If you developed multiple models compare the fairness metrics for the models.

        o Comment on the results.

        o Suggest how the bias/fairness issues could be mitigated.

        o Present the results visually to show salient insights.

        Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機打開當(dāng)前頁
      1. 上一篇:代寫 Behavioural Economics ECON3124
      2. 下一篇:代寫COMP1721、代做java程序設(shè)計
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設(shè)計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 无码8090精品久久一区| 在线视频一区二区| 无码人妻久久久一区二区三区| 少妇激情一区二区三区视频| 国产伦精品一区二区三区免.费| 国产精品第一区第27页| 蜜芽亚洲av无码一区二区三区| 国产主播一区二区| 插我一区二区在线观看| 色屁屁一区二区三区视频国产| 亚洲狠狠狠一区二区三区| 日本不卡在线一区二区三区视频 | 日韩精品无码一区二区三区| 无码8090精品久久一区| 小泽玛丽无码视频一区| 日本韩国一区二区三区| 韩国精品一区视频在线播放| 中文字幕在线不卡一区二区| 日韩人妻精品无码一区二区三区 | 国产成人无码一区二区三区| 国产精品亚洲产品一区二区三区 | 国产精品高清一区二区人妖 | 国产成人一区二区三区在线| 亚洲AV无码一区二区三区国产| 日本人真淫视频一区二区三区 | 国产午夜三级一区二区三 | 日韩高清一区二区| 日本精品3d动漫一区二区| 精品国产亚洲一区二区三区在线观看 | 在线观看中文字幕一区| 国产一区二区精品久久91| 国产精品电影一区二区三区 | 亚洲一区动漫卡通在线播放| 91久久精品午夜一区二区| 亚洲国产成人精品无码一区二区| 国产成人久久精品区一区二区| 亚洲一区二区三区高清在线观看 | 国产主播一区二区| 久久久国产精品亚洲一区| 在线精品亚洲一区二区| 国产av夜夜欢一区二区三区|