99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MLDS 421: Data Mining

時(shí)間:2024-02-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                久久青草国产手机看片福利盒子 | 久久久精品人体av艺术| 日韩美女一区二区三区| 懂色中文一区二区在线播放| 日本一不卡视频| 最新成人av在线| 91黄色免费看| 欧美巨大另类极品videosbest | 91在线一区二区| 欧美电影在线免费观看| 亚洲色图制服诱惑| 久久久国产综合精品女国产盗摄| av亚洲产国偷v产偷v自拍| 日韩欧美在线一区二区三区| 亚洲成人激情av| 日产国产欧美视频一区精品| 亚洲制服丝袜在线| 亚洲精品一区二区三区精华液| 亚洲一区二区三区爽爽爽爽爽 | 欧美亚洲国产一区二区三区va| 日韩你懂的在线观看| 欧美日韩综合一区| 日韩一区二区三区电影在线观看| 91在线丨porny丨国产| 日韩精品乱码av一区二区| 国产精品色在线观看| 亚洲天堂福利av| 日韩精品亚洲专区| 欧美三级在线看| 欧美亚洲一区二区在线观看| 日韩一区二区麻豆国产| 日韩欧美国产电影| 亚洲色图视频免费播放| 紧缚奴在线一区二区三区| 亚洲一二三区在线观看| 国产精品毛片高清在线完整版| 久久久久久一二三区| 国产成人精品影视| 国产在线视视频有精品| 337p粉嫩大胆噜噜噜噜噜91av| 免费看欧美美女黄的网站| 欧美大片在线观看一区二区| 极品少妇xxxx偷拍精品少妇| 久久久国际精品| 国产精品成人一区二区三区夜夜夜| 国产精品一区二区视频| 天天操天天色综合| 一区二区三区在线视频观看58| 538prom精品视频线放| 91色婷婷久久久久合中文| 乱中年女人伦av一区二区| 一区二区三区精密机械公司| 国产一区二区三区| 蓝色福利精品导航| 日本亚洲三级在线| 亚洲午夜久久久久久久久电影网 | 9i看片成人免费高清| 国产中文字幕精品| 亚洲不卡一区二区三区| 国产精品不卡视频| 国产亚洲1区2区3区| 日韩欧美一二区| 欧美性色aⅴ视频一区日韩精品| 日韩精品亚洲一区二区三区免费| 亚洲免费在线看| 亚洲国产激情av| 久久综合网色—综合色88| 在线观看亚洲精品| 色中色一区二区| 欧美福利视频一区| 欧美videos大乳护士334| 日韩欧美国产综合一区| 日韩欧美国产一区二区在线播放| 日韩三级.com| 国产人成一区二区三区影院| 久久国产麻豆精品| 日本不卡的三区四区五区| 黄色小说综合网站| 欧美亚洲精品一区| 久久久国际精品| 五月婷婷综合在线| 91蜜桃网址入口| 久久久久久亚洲综合| 丝袜亚洲另类欧美| 色偷偷久久人人79超碰人人澡| 制服视频三区第一页精品| 欧美国产乱子伦| 麻豆91免费观看| 欧美午夜不卡视频| 国产精品久久国产精麻豆99网站| 亚洲国产sm捆绑调教视频| 风间由美一区二区三区在线观看| 日本高清视频一区二区| 欧美一区中文字幕| 国产在线视频一区二区| 狠狠狠色丁香婷婷综合激情| 日本va欧美va瓶| 国产成人免费视频一区| 欧美日韩一区在线观看| 一区二区三区欧美亚洲| 99精品久久免费看蜜臀剧情介绍 | 国产欧美va欧美不卡在线 | 欧美美女喷水视频| 一区二区三区四区国产精品| aaa国产一区| 综合久久一区二区三区| 精品无人区卡一卡二卡三乱码免费卡| av中文字幕亚洲| 亚洲成在线观看| 国产偷v国产偷v亚洲高清| 色老汉av一区二区三区| 午夜精品一区二区三区三上悠亚| 欧美老女人第四色| 99久久精品免费观看| 亚洲国产欧美日韩另类综合| 欧美日韩不卡一区| 久久国内精品自在自线400部| 国产精品午夜电影| 欧美性xxxxxxxx| 国产成人精品一区二区三区四区 | 色综合夜色一区| 亚洲精品伦理在线| 欧美日韩一区视频| 91啪亚洲精品| 成人高清av在线| 日韩精品乱码免费| 亚洲精品写真福利| 亚洲精品国产精华液| 亚洲欧美国产毛片在线| 日韩美女视频在线| 日本韩国欧美一区二区三区| 国产成人综合亚洲91猫咪| 国产精品电影院| 国产麻豆午夜三级精品| 国产a区久久久| 欧美性欧美巨大黑白大战| 久久九九全国免费| 亚洲国产成人高清精品| 国产很黄免费观看久久| 成人国产免费视频| 91麻豆精品91久久久久同性| 国产精品色在线观看| 国产精品亚洲第一区在线暖暖韩国| 亚洲第一狼人社区| 欧美久久高跟鞋激| 激情综合网激情| 91在线观看污| 亚洲妇熟xx妇色黄| 久久一留热品黄| 91福利资源站| 婷婷综合五月天| 综合激情网...| 4438x亚洲最大成人网| 大尺度一区二区| 日本亚洲三级在线| 2021国产精品久久精品| 国产乱码精品一区二区三区av| 粉嫩13p一区二区三区| 午夜久久久久久电影| 丁香激情综合五月| 亚洲福利视频一区| 欧美精品vⅰdeose4hd| 欧美丰满一区二区免费视频 | 欧美性受极品xxxx喷水| 欧美日产在线观看| 国产999精品久久久久久绿帽| 欧美三级日韩三级国产三级| 日韩高清一区二区| 色94色欧美sute亚洲线路一久| 男人的j进女人的j一区| 欧美做爰猛烈大尺度电影无法无天| 亚洲国产精品久久艾草纯爱| 国产一区二区三区免费播放 | 欧美成va人片在线观看| 成人午夜精品在线| 国产精品全国免费观看高清| 亚洲一区二区欧美日韩 | 色综合天天综合给合国产| 日韩一区二区三区av| 亚洲一区二区综合| 在线观看日韩电影| 亚洲欧美另类久久久精品| 久久蜜臀中文字幕| 国产婷婷色一区二区三区| 欧美视频三区在线播放| 99在线精品视频| 蜜臀av性久久久久蜜臀av麻豆| caoporen国产精品视频| 亚洲日本在线天堂| 久久一二三国产| 国产精品性做久久久久久| 国产精品妹子av| 欧美精品视频www在线观看| 不卡av在线免费观看| 精品精品国产高清a毛片牛牛| 国产精品资源在线| 精品毛片乱码1区2区3区| 精一区二区三区| 欧美tickling网站挠脚心| 激情欧美日韩一区二区|