99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MLDS 421: Data Mining

時(shí)間:2024-02-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          午夜精品999| 国产亚洲制服色| 国产精品外国| 黄色亚洲在线| 亚洲美女av电影| 亚洲欧美在线磁力| 久久久精品欧美丰满| 欧美福利电影网| 国产麻豆精品视频| 亚洲精品国产视频| 欧美在线视频导航| 欧美日韩在线第一页| 国产一区二区日韩精品欧美精品| 极品尤物久久久av免费看| 亚洲黄色在线观看| 欧美一区二区视频观看视频| 蜜桃av久久久亚洲精品| 国产日韩欧美一区二区| 亚洲精品欧美| 免费亚洲电影在线| 国模 一区 二区 三区| 在线午夜精品| 欧美大片va欧美在线播放| 国产视频一区在线观看| 亚洲午夜视频在线| 欧美色视频一区| 亚洲一区视频在线| 国产精品红桃| 久久国产99| 国产尤物精品| 欧美黄色一区二区| 日韩性生活视频| 欧美日韩精品在线视频| 亚洲精品孕妇| 欧美午夜免费| 欧美制服丝袜第一页| 一区在线影院| 欧美人成免费网站| 欧美日韩理论| 欧美不卡一卡二卡免费版| 久久aⅴ国产欧美74aaa| 欧美—级a级欧美特级ar全黄| 亚洲免费影视第一页| 一本综合精品| 99re6热只有精品免费观看| 亚洲人成在线播放| 亚洲乱码国产乱码精品精天堂| 尤物网精品视频| 亚洲第一黄网| 国产精品99久久不卡二区| 99视频一区| 欧美在线视频观看| 久久精品亚洲精品| 欧美激情黄色片| 国产精品国产一区二区 | 亚洲视频在线观看| 欧美在线免费观看视频| 久久久综合视频| 欧美三级中文字幕在线观看| 国产精品久久看| 亚洲福利久久| 亚洲永久字幕| 欧美成人tv| 国自产拍偷拍福利精品免费一| 伊人久久综合| 欧美一区免费视频| 欧美黑人多人双交| 好吊色欧美一区二区三区视频| 亚洲精品久久久久久久久| 欧美一区二区三区另类| 欧美欧美午夜aⅴ在线观看| 国产精品夜夜夜| 日韩一级黄色大片| 久久免费视频在线观看| 国产欧美va欧美不卡在线| 亚洲美女少妇无套啪啪呻吟| 久久精品视频免费观看| 国产伦精品免费视频| 一区二区日韩| 欧美视频一区在线| 99精品欧美一区二区三区| 欧美大片免费| 亚洲精品免费一区二区三区| 中国av一区| 欧美久久一级| 在线成人激情视频| 欧美一区二区三区日韩视频| 欧美精品www| 在线观看欧美| 久久精品国产清高在天天线| 国产精品麻豆欧美日韩ww| 亚洲黄色成人久久久| 久久久精品视频成人| 国产精品美女一区二区| 亚洲乱码久久| 欧美精品一区二区三区四区| 亚洲高清自拍| 欧美高清在线观看| 在线亚洲美日韩| 国产精品亚洲不卡a| 欧美亚洲在线观看| 国产欧美精品日韩精品| 香港成人在线视频| 国产日韩综合一区二区性色av| 亚洲手机成人高清视频| 国产精品久久久久一区二区三区 | a4yy欧美一区二区三区| 欧美高清在线一区二区| 一区二区三区视频在线观看| 国产欧美69| 欧美精品电影在线| 欧美在线免费视频| 最新国产乱人伦偷精品免费网站 | 亚洲国产欧美精品| 国产精品a久久久久久| 久久精品99国产精品日本| 在线欧美三区| 国产欧美视频一区二区三区| 免费日韩成人| 亚洲欧美影院| 亚洲美女视频网| 狠狠色狠狠色综合日日五| 欧美精品一区二区三区视频| 欧美一区二区三区免费观看视频 | 一区二区自拍| 国产一区免费视频| 国产精品国产三级国产aⅴ9色| 久久久久久一区二区| 亚洲综合精品一区二区| 亚洲精品视频免费| 亚洲韩日在线| 樱花yy私人影院亚洲| 在线观看亚洲视频啊啊啊啊| 国产亚洲激情视频在线| 黄色资源网久久资源365| 亚洲黄色在线| 久久精品国产99精品国产亚洲性色 | 欧美午夜欧美| 亚洲欧洲精品一区二区三区不卡 | 欧美视频在线观看一区| 欧美三级日韩三级国产三级| 亚洲欧美制服中文字幕| 香港久久久电影| 美女网站在线免费欧美精品| 久久天堂国产精品| 欧美日韩一区二区精品| 国产女主播一区二区三区| 国产在线视频不卡二| 亚洲日本欧美天堂| 亚洲欧美国产77777| 久久亚洲精品中文字幕冲田杏梨 | 国内精品视频在线播放| 亚洲人妖在线| 久久综合色天天久久综合图片| 亚洲国产精品久久精品怡红院| 香蕉国产精品偷在线观看不卡| 国产精品成人观看视频免费 | 欧美日本视频在线| 亚洲国产精品精华液2区45| 久久爱www| 激情欧美亚洲| 久久综合给合| 亚洲精品视频在线看| 欧美激情一区三区| 亚洲黄色高清| 欧美日本亚洲韩国国产| 一本色道久久加勒比88综合| 欧美电影打屁股sp| 一区二区免费在线播放| 欧美视频亚洲视频| 国产精品永久免费视频| 欧美在线观看一区二区三区| 99热免费精品在线观看| 国产亚洲欧洲997久久综合| 国产精品乱看| 国产欧美婷婷中文| 国产欧美日韩激情| 国产乱理伦片在线观看夜一区| 欧美日韩亚洲91| 国产精品影片在线观看| 国内精品美女在线观看| 国精产品99永久一区一区| 伊人成人在线| 亚洲欧美一区二区视频| 久久精品国产91精品亚洲| 美女精品在线观看| 国产精品乱码| 影音先锋亚洲视频| 亚洲午夜精品一区二区三区他趣| 亚洲欧美日韩国产一区二区三区| 欧美一区二区三区四区在线观看地址 | 1024成人网色www| 久久综合给合| 最新中文字幕一区二区三区| 欧美日韩国语| 亚洲综合欧美日韩| 亚洲国产一区二区精品专区| 欧美在线免费观看亚洲| 国产视频一区二区在线观看| 欧美大片在线影院|