99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲欧美激情一区二区| 国内精品久久久久久久果冻传媒 | 欧美激情亚洲| 亚洲一区二区四区| 亚洲第一中文字幕在线观看| 欧美日韩美女在线| 久久在线免费| 欧美在线视频a| 在线亚洲精品福利网址导航| 亚洲第一在线综合网站| 国产婷婷精品| 国产精品欧美日韩久久| 久久综合五月| 久久久亚洲午夜电影| 亚洲综合精品一区二区| 亚洲伦伦在线| 亚洲国产精品一区二区久 | 国产精品日日摸夜夜添夜夜av| 麻豆成人精品| 欧美一区二区三区免费在线看| 日韩视频一区二区| 亚洲精品久久久久中文字幕欢迎你| 国产一区二区剧情av在线| 国产精品在线看| 国产精品亚洲视频| 欧美性jizz18性欧美| 欧美经典一区二区| 欧美a级片网站| 美女性感视频久久久| 久热爱精品视频线路一| 久久久久一区二区| 麻豆精品精华液| 欧美成黄导航| 欧美日韩国产成人在线观看| 欧美一区激情视频在线观看| 亚洲综合欧美| 欧美在线免费看| 久久精品女人的天堂av| 久久久噜噜噜久久狠狠50岁| 牛人盗摄一区二区三区视频| 欧美精品在线网站| 欧美日韩中文字幕在线| 欧美午夜不卡在线观看免费 | 欧美成人精品在线观看| 欧美freesex8一10精品| 欧美本精品男人aⅴ天堂| 欧美国产高清| 国产精品久久久久三级| 国产亚洲人成a一在线v站 | 在线播放豆国产99亚洲| 亚洲人成网站精品片在线观看| 亚洲日本成人网| 亚洲综合视频一区| 久久精品首页| 欧美日韩精品在线视频| 国产九九精品视频| 精品99一区二区| 9久草视频在线视频精品| 亚洲欧美在线aaa| 老司机午夜精品视频在线观看| 欧美日韩亚洲天堂| 国产亚洲精品久久飘花| 亚洲激情视频在线播放| 先锋影音一区二区三区| 欧美精品一区在线播放| 国产一区激情| 一区二区三区视频在线 | 国产欧美一区二区三区国产幕精品 | 欧美日韩一区二区高清| 国产欧美日韩视频一区二区三区| 亚洲大胆av| 亚洲伊人观看| 欧美日韩成人综合天天影院| 国产综合色在线| 亚洲免费小视频| 欧美激情一区二区三区蜜桃视频 | 久久精品国产清高在天天线| 欧美日韩一二三四五区| 亚洲大片av| 久久国产天堂福利天堂| 国产精品免费看片| 亚洲日本激情| 欧美成人免费网站| 激情成人中文字幕| 久久xxxx| 国产日韩欧美日韩| 亚洲视频精选| 欧美日韩在线视频观看| 亚洲伦理在线免费看| 免费在线成人| 91久久精品日日躁夜夜躁国产| 久久久久国色av免费看影院 | 国产热re99久久6国产精品| 亚洲免费高清| 欧美日韩二区三区| 91久久极品少妇xxxxⅹ软件| 麻豆成人91精品二区三区| 国产日产亚洲精品| 欧美在线视频不卡| 国产主播一区| 久久综合久久综合久久| 尤物视频一区二区| 免费在线欧美黄色| 91久久在线播放| 欧美高清视频www夜色资源网| 影音先锋亚洲精品| 猛干欧美女孩| 亚洲精品女人| 欧美亚洲第一区| 中文在线不卡视频| 国产精品日韩专区| 久久gogo国模裸体人体| 亚洲东热激情| 欧美理论在线播放| 亚洲欧美中文另类| 红桃视频成人| 欧美日韩精品一区二区三区四区| 在线视频欧美日韩精品| 国产农村妇女精品一区二区| 久久久久久亚洲精品杨幂换脸 | 亚洲精品影院| 国产麻豆日韩| 老鸭窝毛片一区二区三区| av成人国产| 黄色成人av网| 国产精品久久毛片a| 久久久久久久精| 日韩视频精品| 国产日韩欧美三级| 欧美不卡在线视频| 亚洲性夜色噜噜噜7777| 在线观看精品视频| 国产精品国产三级国产专区53| 久久婷婷国产综合精品青草 | 欧美精品国产精品日韩精品| 亚洲一区免费在线观看| 精品99视频| 国产精品乱人伦中文| 欧美高清视频免费观看| 香蕉久久一区二区不卡无毒影院| 亚洲国产日韩欧美| 国产日韩一区在线| 欧美视频导航| 欧美激情综合网| 久久久91精品国产一区二区三区 | 国产麻豆综合| 欧美精品v日韩精品v国产精品 | 影音先锋另类| 国产麻豆精品theporn| 欧美日韩视频免费播放| 欧美1级日本1级| 久久久久在线观看| 午夜免费在线观看精品视频| avtt综合网| 亚洲精品永久免费| 亚洲缚视频在线观看| 国产自产在线视频一区| 国产精品丝袜白浆摸在线| 欧美日韩在线精品| 欧美日本精品在线| 欧美大片在线看免费观看| 久久久久www| 久久人91精品久久久久久不卡| 午夜精品久久一牛影视| 亚洲午夜黄色| 亚洲色图综合久久| 中文亚洲视频在线| 亚洲新中文字幕| 亚洲视频狠狠| 午夜精品免费| 欧美在线一二三| 久久久噜噜噜久久中文字幕色伊伊| 亚洲欧美日韩在线| 性一交一乱一区二区洋洋av| 欧美一区二区三区四区高清| 亚欧美中日韩视频| 久久精品男女| 欧美77777| 欧美经典一区二区| 欧美午夜三级| 国产三级精品在线不卡| 国内精品免费午夜毛片| 影音先锋亚洲电影| 亚洲精品国产精品国自产在线 | 亚洲午夜免费福利视频| 亚洲一区精品在线| 久久久蜜桃精品| 欧美国产日产韩国视频| 欧美日韩国产小视频在线观看| 国产精品九九| 国产在线拍偷自揄拍精品| 91久久精品国产91久久| 一区二区三区国产精华| 午夜精品影院在线观看| 久久久夜夜夜| 欧美日韩国产综合视频在线| 国产欧美一区二区精品性| 一区精品在线| 亚洲一区精彩视频| 久久久久国产精品麻豆ai换脸|