99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日本高清不卡一区| 亚洲欧美怡红院| 亚洲男同性恋视频| 在线影院国内精品| 一区二区久久久久久| 欧美日本韩国一区二区三区视频 | 色噜噜狠狠一区二区三区果冻| 伊人性伊人情综合网| 日韩欧美一卡二卡| 色综合久久综合| 蜜臂av日日欢夜夜爽一区| 国产精品三级视频| 91精品国产综合久久久蜜臀图片| 成人一道本在线| 五月天网站亚洲| 国产精品美女久久福利网站| 91精品国产综合久久精品图片| 成人av免费网站| 久久成人18免费观看| 亚洲精品亚洲人成人网在线播放| 久久久久久综合| 欧美日高清视频| 成人国产精品免费网站| 久久精品国产免费| 亚洲超碰97人人做人人爱| 亚洲欧洲日韩一区二区三区| 欧美草草影院在线视频| 欧美吻胸吃奶大尺度电影| 丁香六月久久综合狠狠色| 日本大胆欧美人术艺术动态| 一区二区三区免费| 国产精品欧美一区喷水| 日韩午夜激情电影| 日本久久精品电影| 91尤物视频在线观看| 国产精品主播直播| 国产伦精一区二区三区| 麻豆精品国产传媒mv男同| 一区二区三区中文在线观看| 国产女人水真多18毛片18精品视频| 日韩一级片在线观看| 欧美日韩一区高清| 欧美色图免费看| 色94色欧美sute亚洲13| 91成人在线免费观看| 99久久精品免费观看| 国产白丝网站精品污在线入口| 蜜桃91丨九色丨蝌蚪91桃色| 日本不卡一区二区三区高清视频| 亚洲精品欧美在线| 亚洲色图制服丝袜| 亚洲情趣在线观看| 依依成人综合视频| 亚洲精品你懂的| 亚洲桃色在线一区| 亚洲一区二区三区中文字幕在线 | 中文一区二区在线观看| 久久久久久免费网| 亚洲va国产va欧美va观看| 欧美大尺度电影在线| 欧洲一区二区三区免费视频| 天天射综合影视| 五月激情综合婷婷| 久久99热99| 国产精品一区二区无线| 成人影视亚洲图片在线| 欧美视频完全免费看| 成人免费毛片app| 国产在线视频一区二区| 国产精品一区二区三区99| 国产成人99久久亚洲综合精品| www.在线欧美| 在线免费亚洲电影| 久久99九九99精品| 欧美国产一区二区在线观看| 2024国产精品| 国产日韩欧美一区二区三区乱码 | 韩国精品主播一区二区在线观看 | 亚洲午夜av在线| 亚洲欧洲av一区二区三区久久| 国产精品久久久久久久久快鸭| 国产亚洲污的网站| 久久精品国产亚洲高清剧情介绍| 亚洲丝袜美腿综合| 亚洲激情网站免费观看| 亚洲成av人片一区二区| 久热成人在线视频| 成人国产精品免费网站| 色偷偷久久一区二区三区| 欧美色倩网站大全免费| 欧美军同video69gay| 久久久久久毛片| 亚洲激情成人在线| 九九视频精品免费| 欧洲另类一二三四区| 精品欧美黑人一区二区三区| 亚洲欧美日韩电影| 国内成人精品2018免费看| 日本韩国一区二区| 国产一区高清在线| 91麻豆精品91久久久久同性| 欧美一区二区三区视频| 久久精品欧美一区二区三区不卡 | 1024成人网色www| 日韩国产精品大片| 欧美亚洲动漫制服丝袜| 国产调教视频一区| 理论电影国产精品| 在线观看欧美日本| 中文字幕制服丝袜成人av| 麻豆精品在线观看| 欧美日韩中文字幕一区| 国产精品成人免费精品自在线观看| 日本欧美韩国一区三区| 国产日韩欧美精品综合| 91精品国产入口| 国产精品久久久99| 精品一区二区三区欧美| 欧美日韩色一区| 国产精品久久三| 国产成人啪免费观看软件| 欧美成人性福生活免费看| 亚洲成a人片在线不卡一二三区 | 欧美电影免费观看高清完整版在线| 亚洲免费高清视频在线| 99re视频这里只有精品| 欧美极品少妇xxxxⅹ高跟鞋 | 91亚洲精品乱码久久久久久蜜桃 | 国产美女精品一区二区三区| 国产伦精品一区二区三区视频青涩| 在线观看av一区| 亚洲人吸女人奶水| 色婷婷亚洲精品| 一区二区三区视频在线看| 在线亚洲+欧美+日本专区| 一区二区视频免费在线观看| 在线亚洲人成电影网站色www| 亚洲美女视频在线| 91美女片黄在线| 夜夜夜精品看看| 91精品国产综合久久久蜜臀粉嫩| 日韩电影免费一区| 欧美精品一区二区三区视频| 国产美女精品在线| 亚洲欧洲一区二区三区| 一本大道综合伊人精品热热| 亚洲国产va精品久久久不卡综合| 正在播放一区二区| 久久99精品视频| 午夜欧美一区二区三区在线播放| 五月婷婷色综合| 欧美一区二区久久久| 免费欧美高清视频| 久久综合九色综合欧美就去吻| 国产成人综合亚洲网站| 国产精品不卡视频| 欧美日韩国产首页在线观看| 免费xxxx性欧美18vr| 国产清纯在线一区二区www| 91视频在线看| 狠狠久久亚洲欧美| 国产精品国产三级国产专播品爱网 | 国产亚洲欧美日韩在线一区| 91丨porny丨在线| 日本不卡一二三区黄网| 精品国产网站在线观看| 94-欧美-setu| 久久66热re国产| 中文字幕亚洲不卡| 国产精品夜夜嗨| 99久久精品国产网站| 日韩无一区二区| 免费美女久久99| 91精品国产综合久久久蜜臀图片| 国产香蕉久久精品综合网| 一区二区三区四区高清精品免费观看| 久久福利视频一区二区| 欧美精品一二三| 91麻豆.com| 国产日韩三级在线| 蜜臀va亚洲va欧美va天堂| 色播五月激情综合网| 国产日韩精品久久久| 亚洲精品乱码久久久久| 中文字幕第一区二区| 青草国产精品久久久久久| 不卡视频免费播放| 中文字幕av不卡| 一区二区三区av电影 | 91麻豆精品久久久久蜜臀| 亚洲欧洲日产国码二区| 久久亚洲二区三区| 久久久99精品久久| 国产激情视频一区二区三区欧美 | 成人一区二区三区视频在线观看| 天天影视网天天综合色在线播放| 国产免费成人在线视频| 国产欧美一区二区精品久导航| 精品国产一区二区三区四区四| 在线观看91av|