合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫CS 532、代做Java/Python設計編程

        時間:2024-02-20  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        CS 5**: Homework Assignment 1
        Due: February 15th, 5:59PM
        Department of Computer Science
        Stevens Institute of Technology
        Collaboration Policy. Homeworks may be done individually or in teams of two. It is acceptable
        for students of different teams to collaborate in understanding the material but not in solving the
        problems. Use of the Internet is allowed, but should not include searching for previous solutions
        or answers to the specific questions of the assignment. I will assume that, as participants in a
        graduate course, you will be taking the responsibility of making sure that you personally
        understand the solution to any work arising from collaboration.
        Late Policy. 3% penalty for partial 24-hour period of delay.
        Submission Format. Electronic submission on Canvas is mandatory. Submit in a zip file
        contaning
        PDF file:
        • at most one page of text explaining anything that is not obvious. Also include the
        • richly documented source code (excluding libraries),
        • points used in the computation,
        • resulting images,
        • Instructions for running your code, including the execution command string that
        would generate your results.
        Separate directory for all code
        Separate directory for all generated imagery
        Problem 1. (50 points)
        The goal is for you to apply your knowledge of Homography estimation from a set of image
        features in order to perform a simple image warping task. In particular, you are expected to
        implement
        2
        a) The DLT algorithm for homography estimation using pixel feature locations (15pts)
        b) 2D Bilinear interpolation to render the output image (10 pts)
        c) The DLT algorithm for homography estimation using line feature locations (25pts)
        Download the image of the basketball court from the Canvas course website. Then, generate a
        blank 940 × 500 image and warp the basketball court only from the source image, where it
        appears distorted, to the new image so that it appears as if the new image was taken from directly
        above.
        Notes.
        • You are allowed to use image reading and writing functions, but not homography estimation
        or bilinear interpolations functions.
        • For P1a, Matlab, gimp or Irfanview (Windows only) can be used to click on pixels and
        record their coordinates.
        • For P1c, line coordinates you are free to use the same (four) corner points used in P1a (and
        define lines based on their coordinates) or determine new lines (e.g. lines in the image).
        Problem 2. (50 points) Object Centered motion
        The goal is for you to apply your knowledge of the pinhole camera model by controlling both the
        internal and external parameters of a virtual to generate a camera path that “locks-in” to foreground
        object (i.e. the foreground object should be and retain a constant size in the image throughout the
        entire capture sequence).
        In order to approximate a photorealistic image generation, you are provided a dense point cloud
        augmented with RGB color information. To obtain a rendered image you can use the provided
        rendering function PointCloud2Image, which takes as input a projection matrix and transforms the
        3D point cloud into a 2D image (see below for details). Your task will be to:
        1) Design a path that performs a half circle around (i.e. centered on) the foreground object (in this
        case a fish statue)
        2) Design a sequence of projection matrices corresponding to each frame of capture sequence
        3) Use the provided code to render each of the individual images (capture frames).
        The main challenges are
        3
        a) Setup the camera extrinsics and intrinsics to achieve the desired initial image position
        b) Design a suitable pose interpolation strategy
        Setup: Start the sequence using the camera’s original internal calibration matrix K (provided in the
        data.mat file) and position the camera in such a way that the foreground object occupies in the
        initial image a bounding box of approx 400 by 640 pixels (width and height) respectively.
        (Per reference, positioning the camera at the origin renders the foreground object within a
        bounding box of size 250 by 400 pixels).
        Notes: Implementation details & Matlab Code
        The file data.mat contains the scene of interest represented as a 3D point cloud, the camera internal
        calibration matrix to be used along with the image rendering parameters. All these variables are to
        be loaded into memory and need not be modified.
        The file PointCloud2Image.m contains the point cloud rendering function whose signature is {img
        =PointCloud2Image(P,Sets3DRGB,viewport,filter_size)}. P denotes a 3x4 projection matrix and
        should be the only parameter you will need to vary when calling this function, as the remaining
        parameters should remain constant.
        A simplified example of how to use the function is included in the file SampleCameraPath.m . The
        provided sample code does not does the circling effect, it only displaces the camera towards the
        scene. It will be your task to manipulate the camera internal and external parameters to get the
        desired result.
        The pointcloud data is contained in two variables: BackgroundPointCloudRGB and
        ForegroundPointCloudRGB, each comprising of a 6xN matrix. The first three rows describe the 3D
        coordinates of a point while the last three contain the corresponding RGB values. You may need to
        examine the ForegroundPointCloudRGB to determine the required camera positions. The pointcloud
        was generated from a single depthmap where the foreground object was masked out and its depth
        reduced by half.
        4
        Figure 2. Birds eye view of the observed scene
        The generated video should be approximately 5 seconds in length at a frame rate of 5Hz.
        WMV will be the only format accepted. 
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機打開當前頁
      1. 上一篇:代寫6CCS3ML1、代做Python程序設計
      2. 下一篇:GA.2250代做、代寫C++設計程序
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 91在线精品亚洲一区二区| 国产一区二区三区免费看| 久久久久无码国产精品一区| 精品亚洲AV无码一区二区| 国产不卡视频一区二区三区| 亚洲AV日韩综合一区| 日韩一区二区电影| 国产亚洲自拍一区| 亚洲日本中文字幕一区二区三区| 国产福利一区二区精品秒拍| 精品国产一区二区二三区在线观看 | 精品国产亚洲一区二区在线观看| 无码人妻一区二区三区av| 精品福利一区二区三区免费视频 | 亚洲一区二区三区91| 久久免费区一区二区三波多野| 中文字幕精品亚洲无线码一区| 亚洲片一区二区三区| 一区二区三区高清视频在线观看 | 国产av成人一区二区三区| 成人国产精品一区二区网站| 国产在线第一区二区三区| 一区视频在线播放| 久久国产精品免费一区二区三区| 一区二区三区四区在线播放 | 国产熟女一区二区三区五月婷| 福利国产微拍广场一区视频在线| 在线观看一区二区三区视频| 男人的天堂亚洲一区二区三区| 一区二区三区电影在线观看| 久久综合一区二区无码| 日韩视频一区二区三区| 中字幕一区二区三区乱码| 国产精品无码一区二区三区不卡 | 三上悠亚一区二区观看| 中文字幕一区二区三区在线观看 | 在线日产精品一区| 日韩欧美一区二区三区免费观看| 午夜一区二区在线观看| 国产成人无码精品一区在线观看| 精品一区二区久久久久久久网站|