合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        B31SE編程代做、Java,c++程序代寫

        時間:2024-02-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        School of Engineering and Physical Sciences
        Electrical Electronic and Computer Engineering
        B31SE Image Processing
        Fundamentals of Image Processing with Matlab

        Matlab scripts a01images.m and b01neighbours.m demonstrate how to load and
        image, get some image information, display an image, and perform some simple manipulations
        with an image. Run these scripts on various images. Use matlab help if necessary.

        If you feel yourself comfortable with these simple image processing manipulations and matlab
        programming in general, you can start working on the following programming assignment.

        This assignment consists of four parts (tasks).

        Task 1a (4 points): Nonlinear image filtering. Given a grey-scale image (, ), consider
        the following non-linear iterative process:

        where K is a positive constant. Note that the weights {} depend on the pixel positions (, )
        and the iteration number n. After a certain number of iterations, you should get results similar
        to those shown in the picture below: small-scale image details are removed while salient image
        edges are sharpened.

        Your first task is to implement the above non-linear iterative procedure, perform a number of
        experiments (with different images, different numbers of iterations, and various values of
        parameter k).

        A matlab script simple_averaging.m implements the above iterative scheme in the
        simplest case when all the weights are equal to one: = 1.

        Task 1b (4 points): Low-light image enhancement. The above filtering scheme can be used
        for enhancing low-light images. Given a colour (RGB) image
        Let (, ) be obtained from (, ) by applying the image filtering scheme from Part 1
        described above. An enhanced version of the original colour (, ) is generated by

        where    is a small positive parameter used to avoid division by zero. You are expected to get
        results similar to those shown below:
        original enhanced
        Task 2 (4 points): Image filtering in frequency domain.
        This part is independent of Parts 1 and 2 and devoted to using the Fourier transform for image
        filtering purposes.

        Matlab function fftshift shifts the zero frequency component of an image to the centre of
        spectrum

        Try Fourier4ip.m matlab script and see how the Fourier transform can be used for image
        processing and filtering purposes.

        Your task is as follows. Image eye-hand.png is corrupted by periodic noise. Find the Fourier
        transform of the image, visualise it by using log(abs(fftshift(.))), as seen below.

        An image corrupted by periodic ripples The image in the frequency domain


        The four small crosses in the frequency domain correspond to the frequencies behind the
        periodic noise. Use impixelinfo to locate the frequencies. Construct a notch filter (a band-stop
        filter, you can use small-size rectangles or circles to kill the unwanted frequencies) and use it
        to remove/suppress the periodic noise while preserving the image quality. The Part 3 of your
        report must include the reconstructed image and the filter used in the frequency domain.

        Task 3a (5 points): Image deblurring by the Wiener filter.
        Given a grey-scale image (, ), consider the following non-linear iterative process:

        (, ) = ?(, ) ? (, ) + (, )
        ,
        where f (x,y) is the latent (unblurred) image, g(x,y) is the degraded image, h(x,y) is a known
        blurring kernel, ? denotes the convolution operation, and n(x,y) stands for an additive noise.
        Applying the Fourier transform to both sides of the above equation yields

        (, ) = (, )(, ) + (, )
        .
        The Wiener filter consists of approximating the solution to this equation by

        (, ) = [
        1
        (, )
        |(, )|2
        |(, )|2 +
        ] (, ) =
        ?(, )
        |(, )|2 +
        (, ) (1)
        ,
        where ?(, ) is the complex conjugate of (, ). Implement Weiner filter restoration
        scheme (1) and test it for different types of blur kernels (motion blur and Gaussian blur). In
        your implementation of the Wiener filter restoration scheme (1) you may need to use
        H = psf2otf(h,size(g));
        See https://uk.mathworks.com/help/images/ref/psf2otf.html for details. See also deblur.m.

        Task 3b (5 points): Image deblurring by ISRA. The matlab script deblur.m contains
        simple implementations of two popular image deblurring schemes, the Landweber method
        and the Richardson-Lucy method (in addition, the matlab built-in implementation of the
        Wiener filter is presented in deblur.m). In particular, the Richardson-Lucy method consists
        of the following iterative process

        0(, ) = (, ), +1(, ) = (, ) ? (?(?, ?) ?
        (, )
        (, ) ? ?(, )
        )

        where ? stand for the pixel-wise multiplication and the pixel-wise division is also used. Let us
        consider the so-called ISRA (Image Space Reconstruction Algorithm) method

        0(, ) = (, ), +1(, ) = (, ) ? (
        ?(?, ?) ? (, )
        ?(?, ?) ? ?(, ) ? (, )
        )

        .
        Your task is to implement ISRA and use PSNR graphs (see again deblur.m) to compare
        ISRA against the Wiener, Landweber, and Richarson-Lucy methods for the two types of
        motion blur and Gaussian blur considered in deblur.m.

        Remark. In this particular example of additive gaussian noise, advantages of the Richardson-
        Lucy and ISRA methods are not revealed.


        Task 4 (3 points): Image filtering in frequency domain.

        Matlab script handwritten_digit_recognition_simple.m provides you with a simple
        application of ANN for handwritten digit recognition. Your task is to modify the hidden layers
        of the network in order to achieve the accuracy higher than 93%. You are not allowed to use
        CNN layers. You are not allowed to use more than 100 neurons in total for all your hidden
        layers. You are not allowed to modify the training options.

        You can observe that a higher accuracy can be easily achieved if convolutional layers are used:
        handwritten_digit_recognition.m. You can get more information about various layers used
        in ANN from https://uk.mathworks.com/help/deeplearning/ug/create-simple-deep-
        learning-network-for-classification.html


        Please submit a single report describing briefly your results achieved for Tasks 1, 2,
        3, and 4 of the assignment. Together with the report, please submit your matlab scripts
        implementing your solutions to Tasks 1, 2, 3, and 4.
        請加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

        掃一掃在手機打開當前頁
      1. 上一篇:代寫ECON 323、C/C++,Java程序設計代做
      2. 下一篇:代投EI會議、EI期刊 EI檢索入口查詢方法
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 99久久精品费精品国产一区二区| 射精专区一区二区朝鲜| 国产精品区一区二区三在线播放| 日本一区二区三区精品国产| 日韩av无码一区二区三区| 亚洲国产精品第一区二区三区| 亚洲美女视频一区二区三区| 视频一区在线免费观看| 国产午夜精品一区二区三区极品 | 亚洲日韩一区二区一无码| 日韩成人一区ftp在线播放| 亚洲电影唐人社一区二区| 日本免费电影一区二区| 国产精品毛片一区二区| 一区二区三区免费精品视频| 中文字幕一区日韩精品| 免费无码毛片一区二区APP| 亚洲一区二区三区首页| 久久综合九九亚洲一区| 一区二区三区精品视频| 国产精品乱码一区二区三区 | 国产高清一区二区三区 | 亚洲精品国产suv一区88| 亚洲一区二区三区在线视频| 欧美日韩一区二区成人午夜电影| 亚洲第一区精品观看| 一区二区免费在线观看| 国产精品美女一区二区| 日本一区二区三区不卡在线视频| 毛片一区二区三区| 交换国产精品视频一区| 亚洲.国产.欧美一区二区三区 | 久久久久久免费一区二区三区 | 国产精品无码一区二区三区免费| 国产精品无码一区二区三区毛片 | 午夜福利一区二区三区在线观看 | а天堂中文最新一区二区三区| 精品中文字幕一区在线| 亚洲av片一区二区三区| 国产福利电影一区二区三区久久久久成人精品综合 | 人妻aⅴ无码一区二区三区|