99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

B31SE編程代做、Java,c++程序代寫

時(shí)間:2024-02-17  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



School of Engineering and Physical Sciences
Electrical Electronic and Computer Engineering
B31SE Image Processing
Fundamentals of Image Processing with Matlab

Matlab scripts a01images.m and b01neighbours.m demonstrate how to load and
image, get some image information, display an image, and perform some simple manipulations
with an image. Run these scripts on various images. Use matlab help if necessary.

If you feel yourself comfortable with these simple image processing manipulations and matlab
programming in general, you can start working on the following programming assignment.

This assignment consists of four parts (tasks).

Task 1a (4 points): Nonlinear image filtering. Given a grey-scale image (, ), consider
the following non-linear iterative process:

where K is a positive constant. Note that the weights {} depend on the pixel positions (, )
and the iteration number n. After a certain number of iterations, you should get results similar
to those shown in the picture below: small-scale image details are removed while salient image
edges are sharpened.

Your first task is to implement the above non-linear iterative procedure, perform a number of
experiments (with different images, different numbers of iterations, and various values of
parameter k).

A matlab script simple_averaging.m implements the above iterative scheme in the
simplest case when all the weights are equal to one: = 1.

Task 1b (4 points): Low-light image enhancement. The above filtering scheme can be used
for enhancing low-light images. Given a colour (RGB) image
Let (, ) be obtained from (, ) by applying the image filtering scheme from Part 1
described above. An enhanced version of the original colour (, ) is generated by

where    is a small positive parameter used to avoid division by zero. You are expected to get
results similar to those shown below:
original enhanced
Task 2 (4 points): Image filtering in frequency domain.
This part is independent of Parts 1 and 2 and devoted to using the Fourier transform for image
filtering purposes.

Matlab function fftshift shifts the zero frequency component of an image to the centre of
spectrum

Try Fourier4ip.m matlab script and see how the Fourier transform can be used for image
processing and filtering purposes.

Your task is as follows. Image eye-hand.png is corrupted by periodic noise. Find the Fourier
transform of the image, visualise it by using log(abs(fftshift(.))), as seen below.

An image corrupted by periodic ripples The image in the frequency domain


The four small crosses in the frequency domain correspond to the frequencies behind the
periodic noise. Use impixelinfo to locate the frequencies. Construct a notch filter (a band-stop
filter, you can use small-size rectangles or circles to kill the unwanted frequencies) and use it
to remove/suppress the periodic noise while preserving the image quality. The Part 3 of your
report must include the reconstructed image and the filter used in the frequency domain.

Task 3a (5 points): Image deblurring by the Wiener filter.
Given a grey-scale image (, ), consider the following non-linear iterative process:

(, ) = ?(, ) ? (, ) + (, )
,
where f (x,y) is the latent (unblurred) image, g(x,y) is the degraded image, h(x,y) is a known
blurring kernel, ? denotes the convolution operation, and n(x,y) stands for an additive noise.
Applying the Fourier transform to both sides of the above equation yields

(, ) = (, )(, ) + (, )
.
The Wiener filter consists of approximating the solution to this equation by

(, ) = [
1
(, )
|(, )|2
|(, )|2 +
] (, ) =
?(, )
|(, )|2 +
(, ) (1)
,
where ?(, ) is the complex conjugate of (, ). Implement Weiner filter restoration
scheme (1) and test it for different types of blur kernels (motion blur and Gaussian blur). In
your implementation of the Wiener filter restoration scheme (1) you may need to use
H = psf2otf(h,size(g));
See https://uk.mathworks.com/help/images/ref/psf2otf.html for details. See also deblur.m.

Task 3b (5 points): Image deblurring by ISRA. The matlab script deblur.m contains
simple implementations of two popular image deblurring schemes, the Landweber method
and the Richardson-Lucy method (in addition, the matlab built-in implementation of the
Wiener filter is presented in deblur.m). In particular, the Richardson-Lucy method consists
of the following iterative process

0(, ) = (, ), +1(, ) = (, ) ? (?(?, ?) ?
(, )
(, ) ? ?(, )
)

where ? stand for the pixel-wise multiplication and the pixel-wise division is also used. Let us
consider the so-called ISRA (Image Space Reconstruction Algorithm) method

0(, ) = (, ), +1(, ) = (, ) ? (
?(?, ?) ? (, )
?(?, ?) ? ?(, ) ? (, )
)

.
Your task is to implement ISRA and use PSNR graphs (see again deblur.m) to compare
ISRA against the Wiener, Landweber, and Richarson-Lucy methods for the two types of
motion blur and Gaussian blur considered in deblur.m.

Remark. In this particular example of additive gaussian noise, advantages of the Richardson-
Lucy and ISRA methods are not revealed.


Task 4 (3 points): Image filtering in frequency domain.

Matlab script handwritten_digit_recognition_simple.m provides you with a simple
application of ANN for handwritten digit recognition. Your task is to modify the hidden layers
of the network in order to achieve the accuracy higher than 93%. You are not allowed to use
CNN layers. You are not allowed to use more than 100 neurons in total for all your hidden
layers. You are not allowed to modify the training options.

You can observe that a higher accuracy can be easily achieved if convolutional layers are used:
handwritten_digit_recognition.m. You can get more information about various layers used
in ANN from https://uk.mathworks.com/help/deeplearning/ug/create-simple-deep-
learning-network-for-classification.html


Please submit a single report describing briefly your results achieved for Tasks 1, 2,
3, and 4 of the assignment. Together with the report, please submit your matlab scripts
implementing your solutions to Tasks 1, 2, 3, and 4.
請(qǐng)加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ECON 323、C/C++,Java程序設(shè)計(jì)代做
  • 下一篇:代投EI會(huì)議、EI期刊 EI檢索入口查詢方法
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美日韩黄视频| 欧美在线短视频| 国产欧美在线观看| 欧美国产另类| 久久国产精品久久国产精品| 亚洲免费观看视频| 含羞草久久爱69一区| 欧美日韩性生活视频| 欧美在线黄色| 午夜欧美电影在线观看| 日韩手机在线导航| 亚洲国产三级| 亚洲成色999久久网站| 国产精品网站在线| 欧美日韩一区二区三| 欧美成年人视频| 久久青草久久| 久久精品夜色噜噜亚洲a∨| 亚洲一区二区在线视频| 亚洲片国产一区一级在线观看| 国产在线高清精品| 国产亚洲二区| 国产色综合天天综合网| 国产精品羞羞答答| 国产欧美日韩精品一区| 国产精品青草久久久久福利99| 欧美另类变人与禽xxxxx| 欧美成人免费全部| 亚洲一区二区三区四区在线观看 | 国产精品午夜久久| 国产九九精品视频| 国产日韩一区| 国产主播精品| 亚洲第一毛片| 日韩视频一区二区三区| 日韩视频免费观看高清在线视频| 亚洲乱码国产乱码精品精| 亚洲国产一成人久久精品| 亚洲精品欧美日韩专区| 99成人免费视频| 亚洲在线视频一区| 欧美在线观看视频在线| 乱中年女人伦av一区二区| 免费视频一区| 欧美性大战久久久久久久| 国产精品久久国产三级国电话系列| 国产精品美女在线观看| 国产一区二区三区高清在线观看| 国语自产精品视频在线看抢先版结局| **网站欧美大片在线观看| 99国内精品久久| 亚洲——在线| 久久综合五月| 欧美午夜宅男影院在线观看| 国产人成一区二区三区影院| 在线观看国产一区二区| 亚洲天堂成人在线视频| 久久精品在线播放| 欧美日韩国产在线一区| 国产一区二区在线免费观看| 亚洲国产裸拍裸体视频在线观看乱了| 在线一区日本视频| 久久综合一区二区| 欧美三级电影精品| 一区二区三区在线观看国产| 亚洲丝袜av一区| 久久中文字幕一区二区三区| 国产精品久久久久9999高清| 亚洲国产欧美在线人成| 欧美一区二区黄| 欧美日韩在线一区| 亚洲福利在线观看| 欧美中文字幕在线观看| 欧美性jizz18性欧美| 亚洲国产精品传媒在线观看| 亚洲欧美自拍偷拍| 欧美三区在线视频| 亚洲激情视频在线播放| 久久久国产精品一区二区三区| 国产精品v欧美精品v日本精品动漫| 国产夜色精品一区二区av| 亚洲午夜羞羞片| 欧美日韩三级在线| 亚洲人成在线免费观看| 麻豆精品精华液| 国产日韩欧美在线播放| 亚洲天堂久久| 欧美午夜一区二区| 一二美女精品欧洲| 欧美激情一区二区三区在线视频观看| 黄色精品一区| 久久久人人人| 狠狠入ady亚洲精品| 久久国产主播| 国产一区二区三区在线观看精品| 亚洲欧美日本国产专区一区| 欧美性大战久久久久久久蜜臀| 日韩一级成人av| 欧美日韩综合在线| 国产精品99久久久久久www| 欧美日韩一区二区三区视频| 日韩网站在线| 欧美特黄一区| 亚洲欧美国产另类| 国产欧美精品国产国产专区| 亚洲欧美中文日韩v在线观看| 国产精品v亚洲精品v日韩精品| 在线一区二区日韩| 国产精品成人一区二区艾草| 午夜精品在线看| 精品动漫3d一区二区三区免费版| 久久综合五月| 日韩视频在线一区二区三区| 欧美日韩美女在线| 亚洲欧美中文在线视频| 黄色免费成人| 欧美日本中文字幕| 亚洲综合成人在线| 黄色小说综合网站| 欧美国产视频在线观看| 亚洲网站在线| 国产视频精品网| 欧美xxx在线观看| 一区二区欧美激情| 国产主播一区二区三区四区| 欧美高清视频| 亚洲欧美另类在线观看| 激情亚洲一区二区三区四区| 欧美久久久久中文字幕| 欧美一区二区三区在线观看| ●精品国产综合乱码久久久久| 欧美视频在线免费| 久久综合色88| 亚洲尤物精选| 日韩一级精品视频在线观看| 国产欧美日本一区二区三区| 欧美 日韩 国产 一区| 午夜精品一区二区三区在线 | 亚洲欧美视频在线观看| 尤物yw午夜国产精品视频明星| 欧美日韩卡一卡二| 另类图片综合电影| 亚洲免费小视频| 99国产精品久久久久久久久久| 国产亚洲激情视频在线| 欧美日韩一区二区在线观看视频 | 国产免费亚洲高清| 欧美巨乳在线| 免费不卡在线视频| 久久精品亚洲| 午夜亚洲一区| 亚洲尤物精选| 一区二区三区精密机械公司| 亚洲第一黄色网| 国产揄拍国内精品对白| 国产伦精品一区二区三区在线观看 | 国产精品v欧美精品v日本精品动漫| 蜜乳av另类精品一区二区| 久久精品亚洲精品国产欧美kt∨| 亚洲私人黄色宅男| 99xxxx成人网| 99精品视频一区| 亚洲精品日产精品乱码不卡| 亚洲精品1234| 亚洲黄色性网站| 亚洲日本成人网| 亚洲精品极品| 亚洲日本va在线观看| 亚洲国内自拍| 最近中文字幕日韩精品| 亚洲精品久久久久中文字幕欢迎你| 在线观看欧美亚洲| 亚洲人成在线观看网站高清| 亚洲欧洲在线视频| 一区二区三区欧美| 亚洲一区精品电影| 欧美一区二区三区免费视| 欧美一区二区三区精品| 欧美影院午夜播放| 久久精品国产欧美亚洲人人爽| 久久久国产视频91| 欧美高清hd18日本| 欧美日本在线| 国产精品一区=区| 国产亚洲人成a一在线v站| 国内伊人久久久久久网站视频| 在线免费精品视频| 亚洲免费观看在线视频| 亚洲一区二区三区久久| 欧美中文在线观看| 欧美激情小视频| 国产精品福利在线| 一区二区视频免费完整版观看| 亚洲国产合集| 亚洲免费一区二区| 老司机午夜精品视频| 欧美午夜一区二区| 激情自拍一区| 亚洲一区二区日本| 麻豆国产精品一区二区三区 |